
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 3888
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

www.manaraa.com

Dirk Draheim Gerald Weber (Eds.)

Trends in Enterprise
Application Architecture

VLDB Workshop, TEAA 2005
Trondheim, Norway, August 28, 2005
Revised Selected Papers

13

www.manaraa.com

Volume Editors

Dirk Draheim
Freie Universität Berlin
Institute of Computer Science
Takustr. 9, 14195 Berlin, Germany
E-mail: draheim@acm.org

Gerald Weber
The University of Auckland
Department of Computer Science
38 Princes Street, Auckland 1020, New Zealand
E-mail: g.weber@cs.auckland.ac.nz

Library of Congress Control Number: 2006921983

CR Subject Classification (1998): H.2, H.4, C.2, H.3, J.1, K.4.4, I.2.11

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-32734-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32734-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11681885 06/3142 5 4 3 2 1 0

www.manaraa.com

Preface

TEAA 2005 (Trends in Enterprise Application Architecture) took place as a
workshop of the conference VLDB 2005 (31st International Conference on Very
Large Databases) in August 2005 in Trondheim, Norway.

Enterprise applications are mission critical for organizations. Currently there
are several initiatives that see enterprise application integration as their natural
playground, like Model Driven Architecture and Service Oriented Architecture.
Now is the time to investigate how these approaches can provide added value.
At TEAA 2005 the contributions identified a problem or issue in enterprise
application architecture and proposed and evaluated a solution. The workshop
benefited from lively discussions among the participants.

Applications, operating systems, database systems, hardware architecture
and system administration concepts must be orchestrated to yield an optimized
system architecture that tackles performance, stability, security, maintainability,
and total cost of ownership. In practice, it is always a holistic view that is needed
– it is known that system design approaches that overemphasize one of the
software or hardware architecture aspects are likely to fail. In the TEAA 2005
workshop we examined the conceptual underpinnings of enterprise application
architecture.

We are grateful to our keynote speaker Laura Haas for sharing her insights
with us.

November 2005 Dirk Draheim
Gerald Weber

www.manaraa.com

Organization

Program Committee Chairs

Dirk Draheim Freie Universität Berlin, Germany
Gerald Weber University of Auckland, New Zealand

Program Committee

Ilkay Altintas University of California, San Diego, USA
Thomas Arts IT University of Göteborg, Sweden
Rajendra Bose University of Edinburgh, UK
Mark van den Brand Hogeschool van Amsterdam, Netherlands
Judith Cushing The Evergreen State College, USA
Gill Dobbie University of Auckland, New Zealand
Barry Dowdeswell AARN Innovation Limited, New Zealand
Hannes Federrath Universität Regensburg, Germany
James Frew University of California, Santa Barbara, USA
Martin Große-Rhode Fraunhofer ISST, Germany
Richard Hall Laboratoire LSR-IMAG, France
Christoph Hartwich Stamford Consultants, Switzerland
Josva Kleist Aalborg University, Denmark
Christof Lutteroth University of Auckland, New Zealand
Teresa Mallardo Università degli Studi di Bari, Italy
Frank Maurer University of Calgary, Canada
Josephine Micallef Telcordia Technologies Inc., USA
Jan Newmarch Monash University, Australia
Uday Reddy University of Birmingham, UK
Wolfgang Rother IBM Deutschland, Germany
Narendra Shivaji Chaudhari Nanyang Technological University, Singapore
Marcin Sikorski Gdansk University of Technology, Poland
Gerd Wagner Universität Cottbus, Germany
Rajeev Wankar University of Hyderabad, India
Yanchun Zhang Victoria University, Australia

www.manaraa.com

Table of Contents

Building an Information Infrastructure for Enterprise Applications
Laura Haas . 1

Evaluating Integration Architectures – A Scenario-Based Evaluation of
Integration Technologies

Stephan Aier, Marten Schönherr . 2

Integrating a Software Product Line with Rule-Based Business Process
Modeling

N. Ilker Altintas, Semih Cetin . 15

A Middleware Architecture for Supporting Adaptable Replication of
Enterprise Application Data

J.E. Armendáriz, H. Decker, F.D. Muñoz-Escóı, L. Irún-Briz,
R. de Juan-Maŕın . 29

MDA and Analysis of Web Applications
Behzad Bordbar, Kyriakos Anastasakis . 44

A Message Exchange Architecture for Modern E-Commerce
Barry Dowdeswell, Christof Lutteroth . 56

Architecture for Distributed ERP Systems
Lars Frank . 71

Influence of Balancing Used in a Distributed Data Warehouse on the
Extraction Process

Marcin Gorawski, Pawel Marks . 84

OLAP Schemata for Correct Applications
Hans-Joachim Lenz, Bernhard Thalheim . 99

Towards a Secure Data Stream Management System
Wolfgang Lindner, Jörg Meier . 114

An Efficient Zoning Technique for Multi-dimensional Access Methods
Byunggu Yu, Seon Ho Kim . 129

Author Index . 145

www.manaraa.com

Building an Information Infrastructure
for Enterprise Applications

Laura Haas

IBM Silicon Valley Laboratory

In a modern enterprise, it is inevitable that different portions of the organi-
zation will use different systems to produce, store and search their critical data.
Competition, evolving technology, mergers, acquisitions, and geographic distri-
bution all contribute to this diversity. Only by combining these various systems
can the enterprise realize the full value of the data they contain. Yet building new
applications across these various information sources can be amazingly painful,
forcing developers to discover what data is where, figure out what it means, and
learn myriad different interfaces.

An information infrastructure to address this challenge must offer users access
to any data in the enterprise and the means of reaching additional data external
to the enterprise, from partners, suppliers, etc. The infrastructure should provide
appropriate integration technologies to support, alone or in combination, impor-
tant enterprise usage patterns. It should connect islands of data into a single
virtual information source, so that application development is vastly simplified.

To motivate this vision, this talk explores several real-life enterprise
application challenges and the information technology needed to support them.
It presents currently available technology building blocks, and identifies some
future challenges in building a strategic information infrastructure for enterprise
applications.

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

Evaluating Integration Architectures –
A Scenario-Based Evaluation of Integration

Technologies

Stephan Aier and Marten Schönherr

Technische Universität Berlin, Sekr. FR 6-7, Franklinstr. 28/29, 10587 Berlin
stephan.aier@tu-berlin.de, mschoenherr@sysedv.tu-berlin.de

http://www.sysedv.tu-berlin.de/eai

Abstract. A major aspect of complex Enterprise Architectures is the
integration of existing heterogeneous IT-systems in a business process
oriented way. The paper starts with the definition of terms as Enter-
prise Architecture and process orientation. Based on an empirical study
the paper shows that there is no significant business process orientation
in information system integration projects. Among other reasons this is
due to deficits in understanding and managing integration methods and
technologies. Therefore the paper addresses the evaluation and compar-
ison of relevant integration architectures as a first step to work on that
issue. The paper differentiates individually coded interfaces, centralized
hub&spoke and distributed approaches based on standardized interface
descriptions (Service Oriented Architecture – SOA). The mentioned em-
pirical study was extended by an action research based prototyping to
assure a reliable evaluation and comparison of the three integration ar-
chitectures. To make them comparable they have been implemented in
the same fictitious business scenario which is described briefly. The pa-
per finally compares the integration architectures with a set of 11 crite-
ria which summarize over 400 variables taken into consideration in the
evaluation process. The conclusion of the paper is not a solution but a
suggestion for further research.

1 Enterprise Architecture – Harmonizing Business
Processes and IT Architecture Using Integration
Concepts

In the current discussion on integrative enterprise architectures generic ap-
proaches are missing – an industry standard is far away. A precondition for
the standardization of methods and technologies is the definition of generally
accepted requirements and criteria. A common understanding of criteria sup-
ports or even enables an evaluation of the appropriateness of both: methods and
technologies of integration concepts.

The paper starts with foundations concerning methodological and technolog-
ical aspects of integrative enterprise architectures followed by a 3 step approach
which includes an empirical study on the understanding and use of integration

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 2–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

Evaluating Integration Architectures – A Scenario-Based Evaluation 3

concepts, a prototypical implementation of different integration architectures
and finally the evaluation of the chosen integration architectures based on the
study and the implementation. The 11 criteria used for the evaluation were taken
from an industry funded survey which used more than 400 variables to evaluate
integration technology sets including middleware and EAI (Enterprise Applica-
tion Integration). Considering length restrictions the paper will briefly introduce
the chosen integration architectures along the 11 criteria. Two criteria will be
described in detail.

An important precondition for a stringent consideration is a coherent un-
derstanding of enterprise architecture. An architecture can be understood as an
abstract, holistic view on structures and patterns [1]. Architectures are usually
the result of a planning process and thus represent a master plan for holistic
realization of future measures. These general characteristics applied on enter-
prises lead to the term of enterprise architectures. Enterprise architecture is
the combination of organizational, technical, and psychosocial aspects during
planning and development of socio-technical business information systems. The
paper addresses organizational and technical aspects of enterprise architectures.
Therefore we use the terms organizational architecture and IT architecture. Our
understanding uses the term integration concept which refers to methods and
technologies supporting the integration of information systems in a business
process oriented way. In this context the term business process is not following
a consistently accepted definition. In our understanding a business process is
the sequence of at least two activities which are based on tasks relevant in a
business context done by employees responsible for the execution and/or control
of the activity or task. Especially in the context of the paper a business process
has to be distinguished from technical processes which are describing technical
activities or tasks as messaging, exception handling or similar concepts executed
by IT infrastructures not human beings (Fig. 1).

Organizational architecture contains all non-technical components. It is sim-
ilar to the instrumental understanding of an organization which includes all
explicit regulations for structures and processes. We differentiate organizational
architecture into organizational structure and business processes. IT architec-
ture stands complementary to organizational architecture. It covers all technical

integration conceptsintegration concepts

enterprise architecture

organizational architecture IT architecture

information system

architecture

organizational

structure

business

processes

enterprise

Fig. 1. Enterprise Architecture

www.manaraa.com

4 S. Aier and M. Schönherr

components of enterprise architectures - especially information systems with
their individual information system architecture.

In scientific literature the terms organizational architecture and IT architec-
ture are used inconsistently. Depending on the authors background organiza-
tional architecture addresses technical aspects [2] and IT architecture contains
organizational issues [3]. We keep the concepts separated to emphasize their im-
portance. This seems to make sense, since there are complex interdependencies
between both of them and they significantly influence operational efficiency of
enterprises [4, 5, 6, 7, 8].

Due to changing business requirements business processes usually need to
be changed frequently. The IT architecture has to meet the new requirements
in an efficient way. Complex, historically grown and therefore heterogeneous
IT infrastructures are not designed in a manner which would support changing
requirements. The ability of supporting changing requirements is described as
sustainability of enterprise architectures [8]. Integration concepts are a possi-
ble solution to increase sustainability of enterprise architectures hence reconcile
organizational and IT architecture in an agile and volatile surrounding.

The field of sustainable enterprise architecture suffers from a lack of acad-
emic, empiric and generic approaches. Therefore we made a study on integration
concepts in the context of enterprise architecture which is described in the next
chapters.

2 Empirical Study – Objectives and Method

The study analyses how large organizations implement and use system
integration concepts focusing on technology and their interdependencies to orga-
nizational aspects hence structures and business processes. These research issues
have been analyzed in a descriptive and explorative manner. The study has been
designed as a non-experimental cross section enquiry over a short period of time
primarily using a written standardized questionnaire. Based on the results of the
predominant descriptive and quantitative analysis a second questioning has been
made. It was based on expert interviews hold individually or in small groups.
The purpose of this evaluation was to verify the results and a possibly under-
lying thesis. Finally a factor analysis has completed the empirical study. Using
14 variables this multivariate analysis generated 4 factors supporting the quan-
titative analysis. 63 answered questionnaires could be used for data extraction.
5 individual interviews had been done and 25 people participated in a group
workshop.

The study categorizes results in the following 4 major topics:

– common understanding of integration concepts
– how to organize the introduction of integration concepts
– interdependencies between integration concepts and business processes
– interdependencies between integration concepts and organizational

structures

www.manaraa.com

Evaluating Integration Architectures – A Scenario-Based Evaluation 5

The next chapter will describe a compendium of the first and the third aspect
only due to their relevance for the context of the paper.

3 Integration Concepts – Common Understanding and
Interdependencies with Business Processes

Integration concepts are generally understood as an established technology
predominantly used in large organizations to implement connectivity between
existing IS and to replace individually coded interfaces. It is considered to be
a strategic long-term element of IT architecture providing a modular toolset
basically including software adapters (connectors), data transformation tools
(mapping), monitoring and workflow features and business process management
functionality. To operate implemented integration infrastructure even huge orga-
nizations employ a few technically well educated staff members only. Compared to
the immense effort accepted during the implementation phase it is surprising that
just a few people are carrying the valuable knowledge according to a very expensive
infrastructural investment hence many organizationsdo not pay as much attention
as necessary to an integrated understanding of the enterprise architecture. Even
if the responsibility for integration infrastructures is located in a department re-
sponsible for organizational development issues usually there are too few people
to manage the challenge. Furthermore the common understanding of integration
concepts is technology driven hence in many cases the IT department operates in-
tegration infrastructures. IT departments usually provide enough manpower but
not the organizational understanding of business processes nor the authority to in-
fluence organizational issues. Therefore the IT department is not the right instance
to be responsible for architectural issues in the manner of a holistic conception.

The objective to design and run Integration Concepts in a business process
oriented fashion has rarely been reached in practice. Implementations done in a
process oriented way usually mean technical processes as e.g. message queuing
and exception handling not business processes (Fig. 2).

0%

20%

40%

60%

Datenebene Ebene der Applikations-APIs Prozessebene

fachlich technisch

39%

29%

12%

6%

6%

data level API level process level

business view technical view

Fig. 2. Process Orientation in Integration Projects

www.manaraa.com

6 S. Aier and M. Schönherr

However, in most cases integration projects cause business process changes.
These projects shall lead to better, more efficient and faster business processes.
The most important process changes are automation and consolidation. These
process adaptations result in more formalization of organizational structures.
Hence integration approaches are indirect enablers for business processes which
only become feasible through such projects.

As a result of the empirical study there are no significant implementations
in the companies questioned reconciling business processes and IT architecture
in the meaning of a holistic enterprise architecture due to the dominance of a
technology driven understanding of integration concepts. The methodological
aspect in Integration Concepts mentioned above is not taken into consideration
on a sufficient level. This result has motivated further considerations described
in the next chapters.

4 Methodology vs. Technology

Integration projects with the objective of harmonizing organizational and IT
architecture usually deal with non-technical issues too. Irrespective from the
integration topic reflections on methodological and technical aspects have a long
tradition in the research on information systems.

After studying the relevant literature we state that holistic architectural con-
cepts consist of interrelated methodological and technical aspects. Methods and
Methodologies can be found amongst others in the filed of Enterprise Architec-
ture Frameworks [9, 10] and in the approaches of organizational and technical
patterns of integrated architectural design [11, 12, 13].

The paper focuses in a first approach on evaluation criteria of relevant inte-
gration architectures. Literature on integration technologies often uses product
related categorizations [14, 15]. The present article uses three categories based on
the architecture of the integration solution itself. We differentiate between indi-
vidually coded unidirectional or bidirectional point-to-point interfaces, central-
ized hub&spoke architectures, and decentralized service oriented architectures
(SOA). To some extend it is possible to implement these categories of integra-
tion architectures with commercial EAI products. However, the categories are
used as abstract concepts for planning and implementing integration projects.
Even though real architectures will often mix different architectural types, these
abstract concepts are suitable for an analysis. For the field of individual interfaces
[18] literature provides detailed comments regarding concepts and implementa-
tion, hub&spoke is often described as best practice [14, 15, 8] and SOA [16, 17]
being the latest approach is rarely described in literature yet. So far there are
no serious sources providing a validation or even comparing description of the
integration architectures. Many statements are even emotionally supporting one
specific approach to be the best.

Therefore we designed a test scenario at the EAI Competence Center of the
Technical University Berlin to implement the three types of architecture for
system integration using comparable conditions demanding a business process
oriented implementation.

www.manaraa.com

Evaluating Integration Architectures – A Scenario-Based Evaluation 7

The general facts according to the test scenario and the implementation of
the three integration architectures in the test scenario will be described briefly
in the next chapter. A detailed description would not fit the length restriction
of the paper.

5 Scenario

The fictitious medium-sized company WMYPC (We Make Your PC) sells cus-
tomized computer systems starting from small multimedia computers to enter-
prise server systems. The company consists of five departments. The business
processes of all departments are modeled using UML activity diagrams. These
processes are supported by six individually implemented information systems
and one off the shelf software product. Hence the firms IT landscape is hetero-
geneous. The seven existing information systems use three different concepts of
data storage and are distributed over several computers. The aim of the test sce-
nario was to realize an adequately complex business environment with business
processes selectively supported by heterogeneous information systems.

After business process definition, modeling and implementation of the sce-
nario’s IT infrastructure we have integrated the existing information systems in
a business process oriented way with the described architectural types each in
an own scenario.

Uni- and bidirectional interfaces have been implemented on the basis of XML
documents which are exchanged manually (batch). The hub&spoke implementa-
tion has been done on seven commercial EAI products. For process orientation

BPEL SOAP Java API existing Software System sRM I

Dom ino,nsf-DB

RM I-Serv. GUI,API,BPEL-Cl.

RM I-Serv. GUI,API,BPEL-Cl.

RM I-Serv. GUI,API,BPEL-Cl.

RM I-Serv. GUI,API,BPEL-Cl.FOS

M OS

Prod

FiCo

RM I-Serv. GUI,API,BPEL-Cl.W H

RM I-Serv. GUI,API,BPEL-Cl.QC

QM

SQL

SQL

nsf

Tom cat

AXIS

RM I-Clients
W S-

Gateway

JUDDISQL

Fig. 3. Integration Architecture SOA

www.manaraa.com

8 S. Aier and M. Schönherr

we have used and evaluated the modeling components provided by the respective
tool vendors. The SOA has been implemented using web services technology. Or-
chestration has been done with ORACLE BPEL Manager and BPEL4WS. The
seven information systems are encapsulated in 58 services and executed with
four BPEL processes. Figure 3 shows the SOA integration architecture. The sce-
nario – business processes as well as IT architecture – are the same for all three
architectural implementations.

The following chapter briefly describes 11 criteria used for the evaluation
and comparison of the integration architectures implemented. They have been
created by merging over 400 detailed variables used in an industrial project
surveying integration technologies. The evaluation and comparison uses results
from the empirical study and experiences from the prototypical implementation
considering the 400 variables. Still the presented results are not generic in the
sense of being universally valid in any situation. They have to be taken as a basis
for further research.

6 Criteria and Evaluation

To evaluate and compare the integration architectures we used the following
criteria considering numerous detailed aspects according to design time and run
time characteristics of the implemented architectures.

– Initial planning efforts: Implying an existing IT department, the cri-
terion considers efforts needed to support internal staff with the abil-
ity/competence/knowledge to design, implement and run the integration
technology and/or the costs of mandating external consultancy for support-
ing this people enabling process. The criterion focuses on the starting phase
of an integration project or architectural change.

– Initial development efforts: This criterion considers effort put into initial
development of the integration technology. By using as many standardized
software products as possible the effort is usually comparably low. Develop-
ing the integration architecture individually often means to accept a high
effort. The criterion is rather meant to evaluate the overall costs of an in-
tegration project but to differentiate between the software customizing and
coding contingent of a project.

– Persistent modeling: There is no common understanding of modeling issues
in the field of architectural integration. Most approaches (or commercial
products) model technical aspects as message queuing and/or exception/error
handling etc. As stated in the paper business process orientation is an im-
portant integration paradigm. Persistent modeling means methods, notations
and tools for modeling business processes as well as technical workflows in a
consistent way to follow a business process driven integration approach.

– Technical adaptations: In case of changing integration requirements there
is an impact on the integration technology architecture. The criterion con-
siders development efforts that have to be made to enable the integration
architecture to meet new requirements.

www.manaraa.com

Evaluating Integration Architectures – A Scenario-Based Evaluation 9

– Non-invasive legacy/host integration: Particularly monolithic coded soft-
ware systems without standardized interface descriptions or even connectors
are very hard to integrate in enterprise architectures. Many organizations
running legacy systems are not going to change these systems to improve
their adaptability due to reasons of stability, complexity and the risk which
comes with a system change. This criterion describes the ability of the
considered integration architectures to integrate so called legacy systems in
a non-invasive way.

– Security: Integrating complex enterprise architectures is even more a
security issue than considering security aspects of a single software system.
Integration is driven by system communication and multi-user impact.
Therefore this criterion evaluates the integration architectures according
to their security features. This criterion becomes even more important
considering cross-company processes.

– Maintainability: The criterion compares features (general administration
tools, load balancing, meta data management, monitoring etc.) and efforts
to maintain an integration architecture.

– Customizability: Customizing integration architectures to meet changing
requirements seems to be the complement to ‘technical adaptations’.
However, there are many situations where changes do not need to affect the
technical structure of integration architectures but ask for a specific degree
of freedom in customizing existing features according to the requirements.
Usually generic elements as customizable objects, adapters or even generic
front end forms increase the degree of customizability.

– Stability: This criterion considers the technical reliability of integration
architectures. Failover or offline state is needed to be minimized in complex
enterprise architectures due to direct and indirect impact on secondary
areas as data and business process quality and processing time.

– Transactionality: Transacting huge amounts of data in a specific time is one
of the common tasks in software system communication and integration.
Transactionality guarantees a complete processing of a specific number of in-
teractions between information systems as a single coherent step, i. e. either
all interactions will be processed or not. This may include a rollback of inter-
actions. This criterion becomes crucial and demanding at the same time with
complex business processes distributed among several information systems.

– Costs of operation: Operating integration architectures addresses a signif-
icant quota of the overall costs. They should be taken into consideration
when choosing the right integration architecture.

Table 1 summarizes the results of the evaluation and comparison process.
Due to the fact that the results are partly depending on experimental research
design the chosen scale seams to be crude but sufficient and adequate for the
objective.

The evaluation and especially the comparison have to be interpreted in direct
relation between the different architectures. For example a ‘very poor’ demon-
strates a characteristic compared with the other evaluated architectures not an
absolute evaluation.

www.manaraa.com

10 S. Aier and M. Schönherr

Table 1. Evaluation of integration architectures: −− very poor, − poor, ◦ neutral, +
good, ++ very good

individual hub&
criteria interfaces spoke SOA
initial planning efforts + −− −
initial development efforts − + −
persistent modeling − ++ +
technical adaptations + ◦ +
non-invasive legacy/host integration −− + ◦
security ++ + −
maintainability −− ++ −
customizability −− ++ −
stability ++ + ◦
transactionality ++ ◦ −
costs of operation −− + ◦

Due to lenght restrictions we will explain which arguments led to the
respective evaluation of the alternative architectures for two of the criteria
only – initial planning efforts and persistent modeling.

Initial planning efforts for designing and planning the implementation of an
individually coded point-to-point interface are often quite moderate especially
when information systems provide documented interface descriptions. A nec-
essary precondition is existing basic know-how in the integration technologies
applied – usually widespread programming languages. This is true for most IT
departments of large companies.

In comparison there is often no significant competence for complex EAI
integration tools (hub&spoke) which not only aim at the connection of two infor-
mation systems but on the integration of a whole IT/IS landscape. Such projects
are not only technologically demanding but also methodologically because the
project has to consider many different requirements and stakeholder interests.
As the empiric study points out this usually causes a massive involvement of
external consultancy. Figure 4 shows that most integration projects make use
of external consultancy in the fields of project management, technical support,
IT architecture etc. hence the initial planning efforts are immense compared to
the implementation of an individual interface. Prototyping the EAI hub&spoke
architectures in the test scenario has been very demanding especially in the first
phases when it came to the understanding of proprietary technologies, methods
and features offered by different EAI vendors. Once understood the implemen-
tation was fast and efficient.

Initial planning efforts implementing an SOA is methodologically as demand-
ing as the hub & spoke architecture especially because there are neither formal
guidelines nor many best practices in the field of designing SOA. Technologi-
cally it is less demanding due to standardized straightforward technologies used
in SOA such as web service descriptions. The use of standards in SOA com-
pared to many proprietary features in EAI (hub&spoke) reduces initial planning

www.manaraa.com

Evaluating Integration Architectures – A Scenario-Based Evaluation 11

85% 85% 81% 81% 78% 74% 74% 70% 70% 67%
56%

44% 41% 41% 37% 33%

15%

0%

20%

40%

60%

80%

100%

P
ro

je
kt

le
itu

ng

T
ec

hn
. S

up
po

rt

IT
-S

ol
la

rc
hi

te
kt

ur
en

P
ro

je
kt

du
rc

hf
üh

ru
ng

U
nt

er
n.

üb
er

gr
ei

f.

In
te

gr
at

io
n

P
ro

ze
ss

an
al

ys
en

M
ita

rb
ei

te
rs

ch
ul

un
ge

n

In
te

gr
at

io
ns

st
ra

te
gi

en

D
at

en
m

ig
ra

tio
n

A
pp

lik
at

io
ns

m
ig

ra
tio

n

S
ys

te
m

w
ar

tu
ng

P
ot

en
zi

al
an

al
ys

en

O
rg

a-
S

ol
la

rc
hi

te
kt

ur
en

E
A

I-
T

oo
la

us
w

ah
l

W
irt

sc
ha

ftl
ic

hk
ei

ts
re

ch
n.

O
rg

an
is

at
. S

up
po

rt

E
A

I-
M

ar
kt

an
al

ys
e

pr
oj

ec
t m

an
ag

em
en

t

te
ch

ni
ca

l s
up

po
rt

IT
 a

rc
hi

te
ct

ur
e

pr
oj

ec
t w

or
k

cr
os

s
co

m
pa

ny

in
te

gr
at

io
n

pr
oc

es
s

an
al

ys
is

tr
ai

ni
ng

In
te

gr
at

io
n

st
ra

te
gy

da
ta

 m
ig

ra
tio

n

ap
pl

ic
at

io
n

m
ig

ra
tio

n

m
ai

nt
en

an
ce

pr
oc

es
s

an
al

ys
is

or
ga

ni
za

tio
na

l a
rc

hi
te

ct
ur

e

to
ol

 a
ss

es
sm

en
t/s

el
ec

tio
n

ef
fic

ie
nc

y
au

di
t

or
ga

ni
za

tio
na

l s
up

po
rt

E
A

I m
ar

ke
t a

na
ly

si
s

Fig. 4. Frequencies of external consultancy services in EAI projects

Linkpoints

Business-
W orkflows

Technical-
W orkflows

identifycostum er

create costum er

ordertaking

costum erexists?

no

yes

Custom erDB-SplitterFOS Custom erDB-In

DB-actualizing_error New_Custom erDB_FOS

M OS-NewCustom erDB_FOS

Linkpoints

Business-
W orkflows

Technical-
W orkflows

identifycostum er

create costum er

ordertaking

costum erexists?

no

yes

Linkpoints

Business-
W orkflows

Technical-
W orkflows

Linkpoints

Business-
W orkflows

Technical-
W orkflows

identifycostum er

create costum er

ordertaking

costum erexists?

no

yes

Custom erDB-SplitterFOS Custom erDB-In

DB-actualizing_error New_Custom erDB_FOS

M OS-NewCustom erDB_FOS

Fig. 5. Connecting business and technical workflow models in EAI

efforts. The effort is much higher compared to an individual interface especially
because Persistent modeling is rated poor for individually coded interfaces due
to the fact that individual interfaces are usually implemented not according to
generic business process requirements but individual requirements of connectiv-
ity, transactionality and syntactical mappings considering the specific software
systems. There is no generic or standardized modeling approach, method, no-
tation or tool used to design and implement individual interfaces considering
business processes used in practice. Some might use modeling techniques to sup-
port the implementation of individually coded interfaces but the empirical study
found out that hub&spoke or SOA replace point to point interfaces for reasons
of more generic modeling features offered by these architectures.

EAI (hub&spoke) has been evaluated as ‘very good’ in the criterion of per-
sistent modeling. All implemented products offer modeling methods, notations
and tools with graphical user interfaces. There are definitely differences in quality

www.manaraa.com

12 S. Aier and M. Schönherr

and usability between the different vendors but compared to individual inter-
faces and SOA the features are extremely sophisticated. Usually the products
differentiate business and technical workflows. They offer diverse methods to
connect these levels of abstraction. See Fig. 5 for an example of link points to
connect business and technical workflow models. The modeled workflows often
are executable in real time environments supporting reports for controlling and
business analysis.

The service oriented integration architecture orchestrates services in a basic
or structured way. To do so a script language BPEL (BPEL4WS) and an en-
gine to execute the BPEL files is needed. Usually a simple graphical interface

MOS

FICO

Warehouse

FOS_BPEL
Process

PROD

FOS

Maintenance

Tomcat

Axis

Domino_WS
Wrapper

BPEL_WS
Wrapper

FOS_WS
Client

MOS_BPEL
Process

PROD_BPEL
Process

QC

QC_BPEL
Process

MOS_WS
Client

PROD_WS
Client

QC_WS
Client

Services
FOS

Services
MOS

Services
PROD

Services
QC

Services
FICO

Services
Warehouse

FICO_WS
Client

Warehouse_WS
Client

ORABPEL PM

Lotus Domino

jUDDI

jUDDI-Repository
(MySQL)

MOSMOS

FICO

Warehouse

FOS_BPEL
Process

PRODPROD

FOSFOS

Maintenance

Tomcat

Axis

Domino_WS
Wrapper

BPEL_WS
Wrapper

FOS_WS
Client

MOS_BPEL
Process

PROD_BPEL
Process

QC

QC_BPEL
Process

MOS_WS
Client

PROD_WS
Client

QC_WS
Client

Services
FOS

Services
MOS

Services
PROD

Services
QC

Services
FICO

Services
Warehouse

FICO_WS
Client

Warehouse_WS
Client

ORABPEL PM

Lotus Domino

jUDDI

jUDDI-Repository
(MySQL)

Fig. 6. Encapsulated and orchestrated services in a SOA

www.manaraa.com

Evaluating Integration Architectures – A Scenario-Based Evaluation 13

is provided to model the service composition. There is a huge variety in orches-
trating services especially structures as sequences, parallel flows, switches, loops
and event driven activities. Often the graphical interface is not featuring all pos-
sible modeling algorithms therefore a development environment to implement
script languages is provided. Programming competence is essential for this kind
of modeling. A composition of simple services to complex services is possible.
The SOA has been evaluated as ‘good’ in the criterion of persistent modeling
due to fact that there is a possibility of orchestrating and composing services
along business processes using standardized references and tools. Still there are
deficits in usability and full execution of complex business processes by mod-
eled services. There is a high potential but the approach will need some more
time to become approved. An important unsolved issue is the granularity used
in the service definition phase. Without generic service definition rules there
is no structured way to a later orchestration of services according to business
process requirements due to the fact that flexible orchestration heavily depends
on the technical implementation of a service. The implemented SOA encapsu-
lates 58 services used and orchestrated in four BPEL processes. See Fig. 6 for
an overview.

Web services are just one way to implement SOA. Therefore BPEL is not an
overall standard for modeling services. The approaches used in modeling SOA
are mostly based on UML and BPEL and focused on technological details. A
stringent persistent modeling between business and technical processes depends
on the specific implementation. The described deficits lead to an evaluation of
‘good’ especially according to the mentioned future potential.

7 Conclusion

Integration concepts as a central approach to sustainability in enterprise ar-
chitectures need appropriate methods and technologies. There are few generic
approaches guiding the practitioner towards a sustainable enterprise architec-
ture. The paper delivers first results on surveying interdependencies between
relevant parts of an enterprise architecture and on evaluating different archi-
tectures to integrate the interrelated architectural elements (business processes
and IT architecture). After evaluating and comparing integration architectures
there are no generic patterns which could be used to suggest a single archi-
tectural approach to be the most appropriate integration architecture in gen-
eral. Specific situational requirements guide to the right technology mix used
for an integration concept. As a result of the empirical study described in the
paper there is a lack of holistic architectural understanding. Methods need to
be developed considering life cycle aspects in persistent modeling. A stringent
modeling approach containing a methodology, methods and notations should
be developed. Modeling different levels (from business to technical processes)
and taking time line issues of the mentioned architectural elements into ac-
count are just first ideas for further work on methodical aspects of enterprise
architecture.

www.manaraa.com

14 S. Aier and M. Schönherr

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. 2nd ed.,
Pearson Education Inc., Boston (2003)

2. Nadler, D.A., Gerstein, M.S., Shaw, R.B.: Organizational architecture – designs
for changing organizations. Jossey-Bass, San Francisco (1992)

3. Zachmann, J.A.: A Framework for Information Systems Architecture. In: IBM
Systems Journal 26 (1987) pp. 276–292

4. Markus, M., Robey, D.: Information technology and organizational change:
Causal structure in theory and research. Management Science 34 (1988) S. 583–
589

5. Leavitt, H., Whisler, T.: Management in the 1980s: New information flows cut
new organization flows. Harvard Business Review 36 (1958) S. 41–48

6. Lewin, A.Y., Hunter, S.D.: Information Technology & Organizational Design:
A Longitudinal Study of Information Technology Implementations in the U. S.
Retailing Industrie, 1980-1996. In: H. Glaser, E.F. Schröder, A. v. Werder, (eds.)
Organisation im Wandel der Märkte. Gabler, Wiesbaden (1998) S. 251–286

7. Venkatraman, N.V.: IT-Induced Business Reconfiguration. In: Scott Morton,
M.S. (ed.) The Corporation of the 1990s. Information Technology and Organi-
zational Transformation. Oxford University Press, New York (1991) pp. 122–158

8. Aier, S.: Sustainability of Enterprise Architecture and EAI. Soliman, K.S. (ed.)
Information Technology and Organizations in the 21st Century: Challenges &
Solutions. Proceedings of The 2004 International Business Information Manage-
ment Conference, International Business Information Management Association
(IBIMA), Amman, Jordan, (2004), pp. 182–189.

9. Schekkerman, J.: How to survive in the Jungle of Enterprise Architecture Frame-
works. Trafford, Victoria, Canada (2004)

10. Noran, O.S.: A Mapping of Individual Architecture Frameworks onto GERAM.
In: Bernus, P., Nemes, L., Schmidt, G. (Ed.) Handbook on Enterprise Architec-
ture. Springer, Berlin (2003) pp. 65–212

11. Fowler, M. (ed.): Patterns of Enterprise Application Architecture. MITP, Boston
(2003)

12. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Boston
(2004)

13. Brown, W.J., Malveau, R.C., McCormick, H.W., et al.: Anti Patterns. mitp,
Bonn (2004)

14. Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley Longman,
Amsterdam (2000)

15. Ruh, W.A., Maginnis, F.X., Brown, W.J.: Enterprise Application Integration.
Wiley, John, & Sons, New York (2001)

16. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architec-
ture. Prentice Hall, Upper Saddle River, NJ (2005)

17. Erl, T.: Service-oriented architecture: A Field Guide to integrating XML and
Web Services. Prentice Hall, Upper Saddle River, NJ (2004)

18. Juric, M.B., Basha, S.J., Leander, R., et al.: Professional J2EE EAI. wrox, Birm-
ingham (2001)

www.manaraa.com
D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 15 – 28, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Integrating a Software Product Line with Rule-Based
Business Process Modeling

N. Ilker Altintas1 and Semih Cetin2

1 Cybersoft Information Technologies Co., Atasehir Bulvari, Ata Plaza 3/3, 34758,
Atasehir, Istanbul - Turkey

ilker.altintas@cs.com.tr
2 Cybersoft Information Technologies Co., Silikon Blok, No:18, 06531,

ODTU Teknokent, Ankara - Turkey
semih.cetin@cs.com.tr

Abstract. This paper proposes an approach to integrate a software product line
(Aurora) with reflective rule-based business process modeling (RUMBA).
Aurora is a service-oriented application development and execution platform
supporting today’s well known “Rich Internet Applications” and “Enterprise
Internet Applications” concepts. On the other hand, RUMBA is a rule-based
model in which rules and rule-sets can be expressed in terms of dynamic as-
pects and delegated facts. The proposed approach mainly addresses “Reflective
Aspect” and “Reflective Rule” patterns for the seamless integration of Aurora
and RUMBA. Both architectural patterns introduce a “generative” approach for
developing the basic aspects, dynamic rules and rule-sets so that all can be im-
plemented in the Adaptive Object Model (AOM). The proposed model will be
explained in detail and exemplified with existing projects using both Aurora
and RUMBA approaches.

1 Introduction

Effective management of business processes executed in evolving software infrastruc-
tures becomes more and more important today. Thus, responding to ever changing
business requirements in shorter cycles may put an organization ahead of others in the
stiff competition. One simple way to achieve business responsiveness is speeding up the
software development process with advanced reusability techniques provided by Soft-
ware Product Lines (SPL) [5]. Another might be the separation of concerns for “core
business logic” and “business rules” where core business logic can be implemented by
IT departments whereas business rules can be defined and managed by business
departments along with the administrative tools again provided by IT departments.

Most of the organizations neither employ SPL approach nor the separation of
concerns for core business logic and business rules. Even if they do rarely, they don’t
have an intention to use both at the same time for a more capable SPL and/or better
business process modeling. This paper will propose an approach to integrate an SPL
(called as Aurora) with reflective rule-based business process modeling (called as
RUMBA). Aurora is a service-oriented application development and execution plat-
form even supporting today’s well known Rich Internet Applications (RIA) and

www.manaraa.com

16 N.I. Altintas and S. Cetin

Enterprise Internet Applications (EIA) concepts [28,29,30]. On the other hand,
RUMBA (Rule-Based Model for Basic Aspects) is the rule-based business process
modeling approach implemented with aspect-oriented techniques.

The approach mainly proposes two architectural patterns for the seamless integra-
tion of Aurora and RUMBA: “Reflective Aspect Pattern” and “Reflective Rule
Pattern”. Both patterns are using a “generative” approach for the implementation of
basic aspects, rules and rule-sets in the Adaptive Object Model (AOM) [19,20]. In
order not to keep this approach only at conceptual level, contribution of the study will
be exemplified at every suitable point on existing architectural model of Aurora and
developing rule-based model of RUMBA. Both approaches have been employed in
several enterprise scale projects ranging from core banking to insurance. These pro-
jects will be introduced very briefly as well to emphasize the software quality factors
achieved by using the approach.

2 Aurora Software Product Line

An SPL is a set of software-intensive systems sharing a common, managed set of
features that satisfies the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way. A product
line’s scope is a description of the products constituting the product line or what the
product line is capable of producing [5].

Aurora is a platform independent SPL including core infrastructure based on RIA
and EIA concepts for enterprise Web applications plus the software process manage-
ment methodology, WYSIWYG (What You See Is What You Get) design and devel-
opment environments, configuration management techniques and tools. In order to
eliminate the avoidable coding efforts throughout the software development lifecycle,
Aurora provides techniques and tools for every tier of Web application development.

The Aurora product line has been constructed on the common architectural models
of various enterprise systems such as core banking, tax collection, insurance and cen-
tral registry authority. Hence, with the disciplined reuse of core assets and commonal-
ities it can address the generic problems of performance, cost reduction, complexity
management, maintenance of too many product variants, and responsiveness to
customer/marketplace demands.

As Zubrow and Chastek stated [4], the key component enabling effective
resolution of these problems is the use of a product line architecture that allows an
organization to identify and reuse software artifacts for the efficient creation of
products sharing some commonality, but varying in known and managed ways. The
architecture, in a sense, is the glue that holds the product line together. Therefore,
before addressing the proposed approach for that with reflective aspects and rules, the
following subsections will briefly describe the multi-tier architecture of Aurora
(depicted in Fig. 1) and the associated software process management methodology.

In [4], study of measurement criteria for software product lines indicated two
major sets: measurement for SPL management and measures for asset development
management. However the discussion is beyond the scope of this paper and explained
in another paper entitled by “Aurora Software Product Line” which addresses the
organizational and methodological issues as well [6].

www.manaraa.com

 Integrating a Software Product Line with Rule-Based Business Process Modeling 17

Fig. 1. Multi-tier Architecture of the Aurora Infrastructure

2.1 Presentation Tier

As a reflex to the limitations of HTML, RIA concept introduced the client-side ren-
dering approach that can present very dense, responsive, and graphically rich user
interfaces [28,29,30]. It combines best of the desktop, Web, and communications [3].
In parallel to the basic targets of RIA, the Aurora presentation tier has been designed
with “Zero Development and Deployment Model (ZDDM)” for building rich clients
without compromising the ultra-thin deployment model. Moreover, the Aurora pres-
entation tier does not address only rendering screens but also reporting and printing
capabilities together with client side dynamic caching.

The Aurora presentation tier has been derived from User Interface Markup Lan-
guage (UIML) [1], which is an open standard user interface description language in
XML that can be freely implemented by anyone. The motivation of UIML is to facili-
tate better tools for creation of user interfaces that work on any platform available
today, but which also will allow today's legacy user interfaces to evolve to new forms
for use on new platforms.

2.2 Content Management Tier

The Aurora content management tier acts like a bridge from the presentation tier to
the application tier. Content Management Server (CMS) which is the heart of the
Aurora architectural design, provides the following capabilities:

− Separation of layout from actual data: EBML provides its designers to specify
screen layout and behavior in terms of event-handling and rule management. How-
ever, the transactional data is completely isolated from them and handled sepa-
rately using remote calls. CMS maps the remote call requests coming from clients
and external systems to the component services hosted by the J2EE application
servers. As a result, EBML screen layouts and behaviors can be cached separately.

www.manaraa.com

18 N.I. Altintas and S. Cetin

− User authentication and authorization.
− Session management.
− Management of session state data.
− Client communication management: CMS can communicate to the clients using

different policies in terms of compression and encryption. Different policies can be
applied on varying IPs, roles and user properties.

− Management of client cacheable objects.
− Load balancing and Web switching.
− Instant query presentation: Aurora provides advanced GUI controls to search

reference data. Instant requests are replied by CMS, query results are cached and
served page-by-page on demand.

− Report content generation and presentation.
− Internationalization and personalization support.
− Web Services support: Every core service in Aurora can be deployed as Web Ser-

vices without any extra line-of-code. WSDLs are automatically generated from the
Aurora core service repository, thus B2B integration is as simple as a “point & click”.

2.3 Application Tier – Service-Oriented Architecture (SOA)

The Aurora application model provides a clear separation of business logic from the
content management and data persistence. The component-based architecture results
in partitioning the business logic into proper components (set of objects) in such a
way both to maximize intra-component relations (coherency) and minimize inter-
component interactions (coupling) [24,25]. The Aurora application tier and develop-
ment tools both provide the optimum granularity to satisfy business requirements in
an efficient way. The high-level organization and run-time execution model of the
Aurora middle tier is fully compliant with SOA [21,22].

The Aurora application model uses a simple component object model divided into
two categories: “Business Object Model (BOM)” and “Persistent Object Model
(POM)”. Service Executor (SE) is the global coordinator of services accessing BOM
and POM, thus components are independent of each other to provide isolation and
parallelism during both development and maintenance. Web services are not consid-
ered as the only mean of implementing SOA in Aurora, rather it is just one way of
access to a service-based system [23].

2.4 Data Tier and Connectivity Model

The Aurora data tier usually consists of an XA compliant RDBMS on behalf of Java
Transaction Server (JTS). It manipulates database requests through an implied O2R
mapping layer. Moreover, the Aurora POM architecture can also help establish data
connections with legacy applications through XA-compliant agents (see Fig. 2).

The component model can access POM classes defined by the application develop-
ers using Aurora POM Studio (GUI environment to manage POM). POM Studio can
generate the needed scripts, associated DDL schema and related static Java classes
automatically from these definitions. The O2R mapping tool of Aurora can map the
stored procedures, functions, views and queries as well. In addition, other persistent
object mapping frameworks, such as Hibernate [2], can also be plugged and used.

www.manaraa.com

 Integrating a Software Product Line with Rule-Based Business Process Modeling 19

Fig. 2. Aurora Connectivity and Integration Technologies

For integration with other information systems including the legacy ones, a sepa-
rate module, called as System Connectivity Switch (SCS), has been implemented.
SCS provides the integration between application tier and existing source of informa-
tion. The global transaction management also covering the legacy systems is carried
out by SCS using the XA compliant agents needed by Java Connector Architecture
(JCA). Fig. 2 shows the perspective of Aurora for Enterprise Application Integration
(EAI) using XML and Web Services, transactional and non-transactional connectors
and adaptors (see [26,27] for EAI).

2.5 Software Process Management Methodology

One of the most critical elements of SPL concept is the accompanied development
and software process management methodology [5]. Aurora provides a methodology
for complete software development life cycle ensuring the software development
process to be well-defined, reusable and manageable. The methodology is built
around a software process management repository, which organizes development
processes and defines the roles and responsibilities of every team member.

Prototyping is another cornerstone of the design process in Aurora. The Aurora
testing process defines the organization of test team, members’ roles and responsibili-
ties, scenario management, run management and issue tracking. Aurora also defines
other issues such as requirement management, change management, quality manage-
ment and documentation management. However, details of the methodology will not
be discussed here due to page limitations.

www.manaraa.com

20 N.I. Altintas and S. Cetin

3 Separation of Concerns for Core Business Logic and Business
Rules

Many information systems share an architectural style that emphasizes flexibility and
run-time adaptability [19]. Customers would like to change Business Rules (BR) as
well as adapt the Core Business Logic (CBL) accordingly. Thus, adaptability of CBL
at least through the dynamic flexibility of BR to meet changing system requirements
is very important. To this end, at least two major thoughts have attempted the separa-
tion of concerns for CBL and BR. One approaches the problem from functional
maintainability viewpoint and the other attacks the problem in terms of architectural
sustainability.

These two approaches are known as Aspect-Oriented Programming (AOP) and
Adaptive Object Model (AOM), respectively. In the following sections, they will be
introduced very briefly and then proposed architectural patterns will be explained in
detail together with how they converge aspect orientation and object adaptability for a
better architectural reflectivity.

3.1 Aspect-Oriented Programming

AOP is a technology intended to provide clear separation of crosscutting concerns
[14]. Its main goal is to make design, code more modular, meaning the concerns are
localized rather than scattered, and have well-defined interfaces with the rest of the
system. In this way, AOP solves the issues raised by some design decisions that are
difficult to cleanly capture in code [17]. Those issues are called aspects, and AOP is
intended to provide appropriate isolation, composition and reuse of the code used to
implement them. Nowadays, several AOP approaches such as AspectJ, Composition
Filters, HyperJ and DemeterJ are available [7,9,13,16,18].

AOP paradigm proposes that computer systems are better programmed by
separately specifying the various concerns (properties or areas of interest), which are
composed or weaved together into a coherent program [15]. This is especially useful
when the concerns are crosscutting that correspond to design decisions, which involve
several objects or operations leading to different places in the code that do the same
thing, or do a coordinated simple thing. In addition to several examples of crosscut-
ting concerns such as logging, distribution, persistence, security, authentication,
performance, transactions integrity, as pointed out by D’Hont, AOP is a very good
technique to be used in the separation of concerns for CBL and BR as well [11].

3.2 Adaptive Object Model

Architectures that are designed to adapt to new user requirements by retrieving
descriptive information that can be interpreted at runtime are sometimes called as
“reflective architectures” or “meta architectures”. AOM architecture is based on a
particular kind of reflective architecture. AOM is needed for business applications
that manage products of some sort and are extended to add new products with the
appropriate business rules [20].

AOM is a model that represents classes, attributes, and relationships as metadata.
The system is a model based on instances rather than classes. Users change the

www.manaraa.com

 Integrating a Software Product Line with Rule-Based Business Process Modeling 21

metadata (object model) to reflect changes in the domain. These changes modify the
system’s behavior. In other words, it stores its object model in a database and inter-
prets it. Consequently, the object model is active, when you change it, the system
changes immediately. This is the reason why AOM can be classified as a reflective
architecture. The AOM is good if the system is constantly changing or if you want to
allow users to dynamically configure and extend their system. It can lead to a system
that allows users to "program without programming" [19].

The design of AOM involves three major activities: defining the business entities,
rules and relationships; developing a design of an engine for instantiating and
manipulating these entities according to their rules in the application; and developing
tools for describing these entities, rules and relationships [19,20,10]. To this end,
AOM proposes various patterns to achieve these activities, but there is no generic
framework for building them. Thus, reflectivity is an implied concept in AOM and the
user should provide by itself a generic administration environment (a reflective mid-
dleware) to achieve that reflectivity. Additionally, separation of concerns in CBL and
BR is not a first-level target in AOM but could be achieved by carefully employing
appropriate architectural and/or design patterns.

3.3 Convergence of AOP and AOM: The Reflective Aspect Pattern

Adaptability or dynamism of software systems is not a new concern in software engi-
neering. As introduced before, AOP and AOM have been proposed as full-fledged
approaches to attack the problem of application adaptability or dynamism. However,
it is our observation that they both approach the problem from a single main line of
insight. AOP is an intended approach for functional maintainability and AOM is a
provision for the architectural dynamism of applications.

AOM proposes a pattern-based architecture (such as Composite, Interpreter,
Builder) to define business entities, rules and relationships. However, its suggestions
are only pattern-oriented and AOM does not define a generic framework for applica-
tion development and deployment. Similarly the pattern-oriented approaches are
somehow hard to achieve with the lack of proper programming models and associated
software architectures.

We identified a set of business and architectural requirements that should be
satisfied to develop flexible, reconfigurable and extendible software applications:

− Ease of development.
− Ease of change.
− Ease of administration.
− Ease of deployment: BR and CBL should be deployed separately. This deployment

process should be “hot” enough so that there will be no shutdown and startup cy-
cles in the middle tier.

So, a service-oriented meta-model is proposed as a solution for the requirements listed
above, which can hold the definitions of CBL, BR and the relationships. In addition,
implementations of CBL and BR will be based on AOM. Since AOM provides meta-
data information about CBL and BR classes, attributes will be based on instances
rather than classes. This metadata information is used to form the meta-model. Both
CBL and BR classes can use this metadata information to call each other.

www.manaraa.com

22 N.I. Altintas and S. Cetin

Fig. 3. Reflective Aspect Pattern for the Definition of Core Business Logic

Definition of CBL and BR entities should be designed in AOM such that the
changes and new definitions can be integrated into the application without recompila-
tion. In addition, the relationships should be changed dynamically. To this end, we
propose the Reflective Aspect pattern depicted in Fig. 3.

Reflective Aspect pattern consists of:

− Generative Aspect Model: An aspect with reflective properties is nothing than a
template definition of adaptive objects complying with AOM structure.

− Aspect Factory is a singleton in the core library so that it enables the creation of
dynamic aspects at runtime in association with the templates kept in central Aspect
Type Repository. Aspect Factory will be the gatekeeper for dynamic aspects in
middleware to provide “zero deployment model” by instantiating the aspects from
aspect templates kept in the Central Repository.

− Aspect Type Repository is composed of set of classes to keep the aspect tem-
plates to help Aspect Factory for the instantiation of reflective aspects accordingly.
To this end, aspect definition screens will be the front-end of this Central Reposi-
tory for defining and updating the templates.

− Aspect (Template) Definition: Aspect attributes, methods, hierarchy (aspect and
sub-aspects) and the collaborations with other aspects are all definable through
administrative screens.

www.manaraa.com

 Integrating a Software Product Line with Rule-Based Business Process Modeling 23

− Method Delegator: Actual method implementers can be associated with dynamic
aspects through the employment of Delegator pattern, which is very similar to
Dynamic Behaviors pattern where different versions will be kept as a chain of
responsibilities in the inherent behavior list. Associated generators can generate the
final method calls for these delegators.

4 Rule-Based Model for Basic Aspects as Aurora Middleware

The Reflective Aspect pattern in the previous section provides the development and
runtime management of the CBL with Zero Deployment Model. However, we also
need a model in which business departments can simply define BR. To this end, we
also propose a service-oriented meta-model called as Reflective Rule pattern (shown
in Fig. 4) to manage BR and their relationships with reflective aspects.

Fig. 4. Reflective Rule Pattern for the Definition of Business Rules

By following the principles given in the previous section, BR can be defined and
managed similarly:

− Generative Rule Model: is very similar to Generative Aspect Model. Administra-
tive screens will enable the users to define rules and rule-sets (set of rules that can
be executed consecutively) through simple “if-then-else” structures. Actual fact
implementations will be bound to rule and rule-set classes again with Delegator
pattern.

− Rule Factory: is a singleton in the core library so that it enables the creation of
dynamic rule and rule-sets in association with the templates kept in central
repository.

www.manaraa.com

24 N.I. Altintas and S. Cetin

− Rule Repository: is composed of a set of classes to keep the templates for Rule-
sets and Rules to help Rule Factory for instantiating reflective Rules and Rule-sets
accordingly. To this end, Rule and Rule-set definition screens will be the front-end
of this Central Repository for defining and updating the templates.

− Rule Context: is the glue between aspect and rule/rule-set classes. If a service
needs to execute a BR it will feed the facts as aspect attributes to the rule context
and pass it to rule/rule-set classes. With this approach aspects and rules could be
generated, deployed and managed separately.

Central Repository contains the definitions for aspects, properties, methods, method
parameters, facts, rules, rule-set, rule-context, inter-relationship of repository items
and generation settings.

5 Achieved Quality Factors

The SPL and integrated rule-based business process modeling have been selected as
the system infrastructure for several enterprise projects. The following quality factors
are mainly observed in the real-life projects discussed in Sect. 6.

5.1 Scalability

The scalability in the Aurora architecture can be achieved either by vertically (by
adding processing power to a single hardware unit) or horizontally (by connecting
other hardware units to form a logical unit).

The vertical scalability can produce a proportional throughput as long as you add
more hardware because these systems end up with high-end machines and can make

Fig. 5. Aurora Scalability Model

www.manaraa.com

 Integrating a Software Product Line with Rule-Based Business Process Modeling 25

use of operating systems clustering facilities and hardware capabilities. But the
amount of hardware that you can add to a single box is limited.

The horizontal scalability, on the other hand, is much more beneficial since it in-
creases the system throughput by adding new hardware units while preserving the
existing hardware investment. It is more difficult, however, to achieve near to linear
scalability since addition of new hardware will increase the communication as well.

The Aurora scalability model is depicted in Fig 5. Content Management Servers
(CMS) are clustered because they need to persist session state on a shared disk or in
dedicated RDBMS. There is no interdependence among CMSs, they individually
depend on the persistent space. The Web Switch (A) dispatches the incoming requests
from the client based on “Source-IP Based Round Robin”, which means as long as the
CMS having the session state is alive Web Switch will dispatch the subsequent re-
quests to that CMS, otherwise it will select another one using round robin approach.

When a request arrives to any CMS, it restores the session state data, attaches and
delegates the request to Web Switch (B). Web Switch (B) delivers it to one of the
Application Servers (AS) based on round robin again. The application servers need
not to be clustered or on the same hardware box since there is no dependency among
them. The request terminates in the AS instance and it starts executing the transaction.

The above model has been tested in several enterprise projects. The test results
showed that the Aurora application model has near to linear scalability (%98.8). This
is due to the separation of CMS and AS instances and the elimination of dependency
among CMS and AS instances.

5.2 7x24 Availability

As will be discussed in Sect. 6, the Aurora infrastructure has been used in several
mission-critical enterprise applications including the core banking, insurance and
central registry authority. Almost all of them require 7x24 availability since they all
have access from different channels including the Internet.
 The architectural model discussed in Sect. 5.1 also addresses the availability re-
quirements of enterprise systems. The interdependency of content servers is limited to
accessing the session state data that means if any content server fails the session state
will be recovered from the common persistent session data. From the application
server viewpoint, no dependency exists since they do not have any local state infor-
mation and shared termination request for independent services.

6 Case Studies

This section briefly describes the enterprise projects having the Aurora architecture
and RUMBA model. The common characteristics of these projects are having geo-
graphically distributed access channels, giving service to 1000+ users, executing
complex and diverse business services, managing high volume of data and respective
complexity, requiring power user capabilities over the Web, necessitating continuous
and reliable interaction, running high volume of transactions especially at peak times,
defining the 7x24 availability, having increased load over the time, and the need for
B2B and B2C integration. Actually these characteristics expose the original design
requirements of Aurora.

www.manaraa.com

26 N.I. Altintas and S. Cetin

− Core Banking System (CBS) has been developed in approximately 2 years and
completed in 3600 man-months. Java-based Core Banking Application is live for
more than two years. The system has been integrated with more than 20 external
system using XML/Web Service based adapters. The banking business model has
been built on product and process concepts.

− Central Registry Authority has been developed in one and a half year with 400
man-months effort and has been in operation since the first quarter of 2005.

− Insurance Project is a very recent project where Aurora and the recently designed
RUMBA model are being used. In this application, CBL is expressed in terms of
basic aspects whereas the BR are defined using reflective rules and rule-sets by
business departments. The prototype of the system (Customer Module) has been
developed and succeeded in the preliminary tests.

The common architectural approaches employed by these projects are RIA with
EBML presentation, SOA, Component-Based Development (CBD), Web Services for
B2B integration and effective O2R mapping.

These systems have also changed the organization of IT departments so far. They
have been reorganized according to the Aurora software development process, and
dedicated teams are now responsible for requirement management, change manage-
ment, configuration and release management, test management and issue tracking and
quality management. Respective development teams, on the other hand, accomplish
the design and development of application modules and they are less dependent on the
members of other teams.

7 Conclusion

In this paper, we have introduced the Aurora SPL, which is a platform independent
multi-tier Web architecture including core infrastructure based on RIA and EIA mod-
els for enterprise Web applications plus the software process management methodol-
ogy, WYSIWYG design and development environments, configuration management
techniques and tools. The projects having the Aurora architecture and achieved soft-
ware quality factors have also been discussed.

Main contribution of the work is introduction of the “Reflective Aspect” and “Re-
flective Rule” patterns, which enable the integration of RUMBA with Aurora SPL.
“Reflective Aspect” and “Reflective Rule” are architectural patterns proposing a
“generative” model for basic aspects, rules and rule-sets designed thoroughly in AOM
based on very simple delegated methods to be implemented by developers. The pro-
posed model enables software development organizations to have a more capable SPL
and/or better business process modeling together with the realization of separation of
concerns for CBL and BR.

Our work continues with the construction of CBL/BR engine with high-level APIs
and an associated powerful execution model. The engine will constitute an effective
bridge between the presentation tier and rule-based application model. Another direc-
tion for the future research will be the formal assessment of Aurora SPL including the
architectural, methodological, organization and project management concerns.

www.manaraa.com

 Integrating a Software Product Line with Rule-Based Business Process Modeling 27

References

1. Phanouriou, Constantinos: UIML: A Device-Independent User Interface Markup Lan-
guage. Ph.D. dissertation. http://scholar.lib.vt.edu/theses/available/etd-08122000-
19510051/ (2000)

2. Hibernate. http://www.hibernate.org/
3. Duhl, J., The Business Impact of Rich Internet Applications. IDC White Paper. (2003)
4. Zubrow, Dave & Chastek, Gary: Measures for Software Product Lines, Technical Note

CMU/SEI-2003-TN-031. (2003)
5. Clements, P. & Northrop, L. Software Product Lines: Patterns and Practice. Reading, MA:

Addison Wesley. (2001)
6. Altintas, N. Ilker & Cetin, Semih. Aurora Software Product Line, in 2nd National Software

Engineering Symposium. Ankara. (2005)
7. M. Aksit and B. Tekinerdogan, Aspect-Oriented Programming Using Composition Filters,

in Object-Oriented Technology, S. Demeyer and J. Bosch (Eds.), ECOOP'98 Workshop
Reader, Springer Verlag. (1998) pp 435

8. Anderson, Greg: Dynamic Behaviors in Java: Dynamically adapt program behaviors at
runtime, December 27 2004, Last Retrieved 15 April 2005
http://www.javaworld.com/javaworld/jw-12-2004/jw-1227-behavior_p.html

9. L. Bergmans, M. Aksit and B. Tekinerdogan, Aspect Composition Using Composition Fil-
ters, in Software Architectures and Component Technology: The State of the Art in Re-
search and Practice, M. Aksit (Ed.), Kluwer Academic Publishers, pp. 357 - 382, October
2001. (ISBN 0-7923-7576-9).

10. MetaData and Adaptive Object-Model, Last Retrieved 30 March 2005,
http://www.adaptiveobjectmodel.com

11. D’Hont Maja, Hybrid Aspects for Integrating Rule-Based Knowledge and Object-Oriented
Functionality. Ph.D. Thesis. System and Software Engineering Lab, Vrije Universiteit
Brussel. (2004)

12. Dantas A. and Borba P. Adaptability Aspects: An Architectural Pattern for Structuring
Adaptive Applications. In Third Latin American Conference on Pattern Languages of
Programming, SugarLoaf- PLoP’2003, Brazil. (2003)

13. Northeastern University, College of Computer and Information Science, DemeterJ: As-
pect-Oriented Software Development, 1996, Web address
http://www.ccs.neu.edu/home/lieber/demeter.html

14. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing Aspects of AOP.
Communications of the ACM 44 (2001) 33–38

15. Filman, R.E., Elrad, T., Bader, A.: Aspect-Oriented Programming. Communications of the
ACM 44 (2001) 29–32

16. IBM, HyperJ: Multi-Dimensional Separation of Concerns for Java, October 2001, Web
address http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

17. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,Irwin,
J.: Aspect–Oriented Programming. In: European Conference on Object–Oriented Pro-
gramming, ECOOP’97. LNCS 1241, Finland, Springer–Verlag (1997) 220–242

18. Ramnivas Laddad AspectJ in Action. Practical Aspect Oriented Programming Manning
Publications Co. ISBN 1-930110-93-6 2003

19. Yoder J. W., Balaguer F., & Johnson R.. "Architecture and Design of Adaptive Object
Models" Intriguing Technology Presentation at the 2001 Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA '01), ACM SIGPLAN
Notices, ACM Press, (2001).

www.manaraa.com

28 N.I. Altintas and S. Cetin

20. Yoder J. W., Balaguer, F., & Johnson, R. "Adaptive Object Models for Implementing
Business Rules" Position Paper for Third Workshop on Best-Practices for Business Rules
Design and Implementation, OOPSLA (2001)

21. Erl, Thomas. Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall. (2004)

22. Krafzig, D., Banke, K., & Slama, D. Enterprise SOA : Service-Oriented Architecture Best
Practices (The Coad Series). Prentice Hall PTR. (2004)

23. Stevens, M., Service-Oriented Architecture, in Java Web Services Architecture,
McGovern, J., Tyagi, S., Stevens, M., and Mathew, S., Morgan Kaufmann Publishers.
(2003)

24. Stevens, W., Myers, G., and Constantine, L. Structured design. IBM System J. 13, 2.
(1974) 115–139

25. Linthicum, D. S., Coupling Versus Cohesion: When to Leverage Services. (2004) Web
Address http://www.ebizq.net/hot_topics/soa/features/4688.html

26. Linthicum, D. S., Enterprise Application Integration. Addison-Wesley Information Tech-
nology Series. (1999)

27. Cummins, F., Enterprise Integration: An Architecture for Enterprise Application and Sys-
tems Integration. Wiley. (2002)

28. O'Rourke, C., A Look at Rich Internet Applications. Oracle Magazine. (2004)
29. Grosso, W., Laszlo: An Open Source Framework for Rich Internet Applications. (2005)

Web Address http://today.java.net/pub/a/today/2005/03/22/laszlo.html
30. Mullet, K., The Essence of Effective Rich Internet Applications. Macromedia Experience

Design. (2003)

www.manaraa.com

A Middleware Architecture for Supporting
Adaptable Replication of Enterprise Application Data�

J.E. Armendáriz1, H. Decker2, F.D. Muñoz-Escoı́2,
L. Irún-Briz2, and R. de Juan-Marı́n2

1 Dpto. de Matemática e Informática, Universidad Pública de Navarra, Campus Arrosadı́a,
31006 Pamplona, Spain

2 Instituto Tecnológico de Informática, Campus de Vera, 46022 Valencia, Spain
enrique.armendariz@unavarra.es,

{hendrik, fmunyoz, lirun, rjuan}@iti.es

Abstract. Enterprise-wide data replication improves availability, performance,
fault-tolerance and dependability of database services within and between dif-
ferent subunits in medium and large enterprises. The overhead of consistency
management of replicated data can be tamed by built-in DBMS functionality.
Different kinds of applications, e.g., update-intensive online transaction process-
ing, cyclical updates for data warehousing, knowledge sharing of repository data,
and so on, have different requirements for the availability, up-to-dateness and
consistency of replicated data. Thus, replication strategies should be adaptable to
the specific requirements of diverse enterprise applications. We describe a mid-
dleware for enterprise-wide data replication. It maintains meta data for several
protocols, so that the replication strategy can be adapted on the fly to the actual
needs of an application.

1 Introduction

Medium- and large-sized enterprises are facing the challenge of making distributed in-
formation and related IT services highly available, performant and fault-tolerant, not
only to external clients and customers but also to in-house users in business units as
diverse as corporate and departmental administrations, planning, logistics, acquisition,
production, sales, various levels of the management hierarchy, etc. Data replication has
come to be a very promising way of boosting the availability, performance and fault tol-
erance of enterprise applications with underlying databases, including data warehouses,
data marts or other kinds of data. Replication does not just consist of backup copies,
which are usually off-line, but rather consists of a fully transparent on-line distribution
of copies of entire databases or substantial parts thereof, including replication protocols
and tradeoff policies to balance out requirements of availability and performance on
one hand, and consistency of replica on the other.

Data-intensive enterprise applications typically range from frequently updated data-
bases for online transaction processing applications, hourly or daily updated data ware-
houses, weekly or monthly updated data repositories, read-only services for external

� We acknowledge the support by the Spanish MCyT grant TIC2003-09420-C02 and the EU
grant FP6-2003-IST-2-004152.

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 29–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

30 J.E. Armendáriz et al.

mobile users, read- and write-access options for privileged internal users, and more.
The availability, performance and fault tolerance of each of these databases, informa-
tion systems and services is well-known to significantly benefit from replication.

However, two major hurdles need to be overcome when introducing replication for
improving the availability, performance and fault tolerance of IT applications within and
between diverse business units. The first is the error-prone complexity of developing
suitable replication protocols, as well as the overhead produced by such protocols for
maintaining the consistency of replicated data [3]. For business-critical applications,
this can easily amount to a severe impediment.

The second obstacle which may prevent the use of replication in enterprise applica-
tions is that different departments use different services and have different requirements
on the consistency and availability of corporate data. For instance, for the strategic plan-
ning of an airline enterprise, the statistics delivered by a data warehouse typically do
not rely on most recent updates to business data. Rather, statistics are generated in
overnight or background processes. They refer to stable database states reached at well-
defined breakpoints (e.g., at the end of the previous day), without taking into account
currently ongoing transactions. On the other hand, booking and sales services for online
flight reservations need to be based on up-to-date database states. In general, different
classes of applications and users possibly have different requirements on the accuracy,
replication consistency, timeliness and availability of the underlying data. However, dis-
tributed databases typically support at most just a single manner of replication, a fixed
consistency maintenance scheme and a uniform policy for availability and failover man-
agement. A more flexible replication architecture which can be adapted to the changing
needs of different applications and users is therefore desirable.

In this paper, we describe the middleware MADIS, with an emphasis on its
suitability for enterprise applications [6]. It enhances the availability, performance,
fault-tolerance and dependability of business applications by enterprise-wide database
replication. “Enterprise-wide” implies that replication in both local- and wide-area net-
works is supported. Both can be combined seamlessly, which is important for a smooth
interoperation of intra- and extranet applications.

Our middleware overcomes the two stumbling blocks mentioned above. With regard
to the first, standard SQL constructs (views, triggers etc) and ready-made SQL function-
ality (schema definition, trigger firing etc) are used for implementing major parts of the
meta data handling and the network communication of the protocols. That way, the
protocols themselves become much less cluttered and thus much easier to develop and
implement. With regard to the second, MADIS simultaneously maintains meta data for
several protocols, so that the replication strategy can be adapted seamlessly. Suitable
protocols can be chosen, plugged in and exchanged on the fly in order to adapt to the
actual needs of given applications.

Section 2 describes the overall architecture, emphasising the adaptability of replica-
tion strategies and the pluggability of protocols. Section 3 showcases different configu-
rations of the middleware. Section 4 describes the use of standard SQL functionality for
decreasing the overhead of meta data management and replication consistency. Section
5 outlines an implementation of the replication consistency management as a standard
JDBC driver. Section 6 experimentally verifies the performance advantage claimed in

www.manaraa.com

A Middleware Architecture for Supporting Adaptable Replication 31

Sect. 4. Section 7 provides a review of recent works addressing replication of enterprise
data. Finally, Sect. 8 concludes the paper.

2 Architecture

The architecture is two-layered, see Fig. 1. It makes consistency management inde-
pendent of any DBMS particularities. MADIS takes advantage of ready-made database
resources so that protocol overhead is kept to a minimum. The replication strategy is
adaptable, and thus more dependable, since the architecture allows for plugging in suit-
able protocols that fit given applications best.

The upper layer consists of replication management functions, while the lower one
of a mechanism for extending the original database schema. The extension exclusively
uses standard SQL constructs such as view definitions and triggers. The upper layer
handles transaction requests from users or applications and uses the report tables for
transparent replication management. Meta data of database records involved in transac-
tions are automatically stored in particular tables of the extended schema, called report
tables. Thus, meta data handling becomes much simpler. The upper layer processes
transaction requests from users or applications by making use of the report tables for
transparent replication management. The upper layer can be implemented in any pro-
gramming language with a SQL interface, since its functionality exclusively relies on
standard SQL constructs executed by the underlying DBMS.

Fig. 1. Layered MADIS architecture

The report tables account for transactions in the local node, and are updated within
the transactions accounted for. The schema extension also includes some stored pro-
cedures which hide some schema extension details to the upper layer. The latter is
sandwiched between client applications and database, acting as a database mediator.
Accesses to the database as well as commit/rollback requests are intercepted, such that

www.manaraa.com

32 J.E. Armendáriz et al.

the replication protocol can transparently do its work. The protocol may access the
report tables to obtain information about transactions, in order to cater for required
consistency guarantees. The protocol may also manipulate the extended schema using
stored procedures.

Of course, the performance of such a middleware will always tend to be somewhat
worse than that of a core-based solution, such as Postgres-R [11], but its advantage is
to be independent of the given database and easily portable to other DBMSs.

The implementation of the consistency manager CM, i.e., the core of MADIS, is in-
dependent of the underlying database. In Sect. 5, we describe a Java implementation, to
be used by client applications as a common JDBC driver. Its consistency control func-
tionality is provided transparently to users and applications. The CM handles transac-
tion requests, including multiple sequential transactions in different JDBC consistency
modes, and communicates with database replicas. It provides the plug-in for the repli-
cation protocol chosen according to given needs and requirements. All supported proto-
cols share some common characteristics. Communication between the database replicas
is controlled by the CM which is local to each network node.

MADIS supports the pluggability of protocols, i.e., a suitable protocol (e.g., with
eager or lazy update propagation, optimistic or pessimistic concurrency control, etc)
can be freely chosen, plugged in and exchanged, according to the shifting needs of
given applications, even at runtime. Protocol switching is seamless and fast, since the
meta data for each protocol in the MADIS repertoire is readily at hand at plug-in time.
In Sect. 3, we outline different configuration scenarios of the middleware in which
different replication protocols are plugged in.

3 Intranet and Extranet Configurations

Enterprise applications can be classified as services for either internal or external pur-
poses. Internal applications typically are intranet enterprise applications, e.g., IT-based
collaboration between different business units, or knowledge management, which is
open for internal use but hidden to the outside world. Typical external applications are
extranet services, provided via an enterprise web portal to customers and clients. MADIS
can be used to support the data replication of both kinds of enterprise applications.

For intranet applications, data are replicated transparently at each user site. Such
configurations can be likened to peer-to-peer applications. On the other hand, using
MADIS for data replication of extranet enterprise services means that external users ac-
cess a virtual database which does not belong to their own site. Thus, extranet users
behave as clients of a virtual server which actually is a transparently distributed sys-
tem the high availability, performance, fault tolerance and dependability of which is
supported by a transparent replication architecture.

As shown in Fig. 2, intranet and extranet application scenarios can be interoperated
orthogonally. Users of one or several extranet MADIS-supported enterprise applications
may at the same time use replicas of one or several intranet applications relying on
transparently replicated data. Then, installations of MADIS for intranet and extranet
application support can (and should) be independently tuned according to their own
particular requirements. In particular, different protocols can be plugged into different

www.manaraa.com

A Middleware Architecture for Supporting Adaptable Replication 33

MADIS

MADIS

INTRANET
APPLICATION

USER 2.1

MADIS

MADIS

MADIS

MADIS

Replica I2Replica I1

 Replica I3

USER 2.2

USER 3.3

USER 3.2

USER 3.1

USER 1.3

USER 1.2

USER 1.1

 APPLICATION
 EXTRANET

Replica E1 Replica E2 Replica E3

Fig. 2. Intranet and extranet application support

installations of the middleware for different applications, for simultaneously meeting
different requirements of availability and replication consistency.

Web-based collaboration may serve as an example of a combination of intranet and
extranet applications. For instance, external collaboration partners (e.g., customers or
business partners) may use an application driven by an enterprise-owned web server for
scheduling a web meeting and locating other partners. Suppose that, for making this
application highly available, performant, fault-tolerant and dependable, the underlying
data are replicated by MADIS. Further, suppose that the processes and data for running
the actual web meeting are served by an internal application, the data of which are also
replicated among the different participants of the enterprise, as pictured in Fig. 2 (the
large cylinders suggests that users perceive distributed replicas, represented by small
cylinders, as a single system). Then, the extranet application is probably best served
by a replication protocol that guarantees a very high degree of data consistency, since
the scheduling data are supposed to be accurate at any time. On the other hand, repli-
cation protocols for the database in the intranet can possibly be more relaxed. This is
because it neither really matters nor is possible at all that the latest version of shared
collaboration data are always immediately replicated and displayed on each screen
at the very same time. Rather, delays of up to some seconds are usually tolerable in
data communication for web-based collaboration. Hence, protocols used in the intranet
may take advantage of such delays by allowing to slightly defer activities for achieving
consistency of all replica.

Relaxation of consistency can then be conveniently traded off in favour of other
virtues of the protocols. For instance, a higher precaution can be taken in terms of failure

www.manaraa.com

34 J.E. Armendáriz et al.

prevention and seamless error recovery, which improves the availability of shared data
as well as their recovery in case of a network breakdown or a node failure.

4 Implementing Replication with Standard SQL

The lower layer of the architecture consists of a schema extension of the underlying
database, including views, triggers and stored procedures for maintaining records about
activities performed at transaction time. Distribution is achieved by migrating the ex-
tended schema to each replicated node. In particular, writesets and other transaction
meta data are recorded. As different meta data are needed by different protocols, the ex-
tension caters for the meta data of each protocol in the MADIS repertoire, also of those
that are currently not plugged in. Optionally, also information about readsets (possibly
including the information read to perform queries) can be maintained. If that option is
not taken, any protocol that would need such information has to perform some work
that otherwise is done on the upper layer.

4.1 Modified and Added Tables

To each table Ti in the original schema, the field local Ti id is added for identifying
and linking each row of Ti with its associated meta data. This identifier is local to each
node, i.e., each row may have different local Ti id’s distributed over the network. Each
row also has a unique global identifier, composed of the row’s creator node ID and the
row identifier local to that node, which is equal in all replicas.

For each Ti, a table Meta Ti is created, containing the meta data for any replication
protocol in the repertoire. Meta Ti contains

– local id: local identifier; primary key.
– global id: unique global identifier.
– version: the row’s version number.
– transaction id: ID of the last transaction that updated the row.
– timestamp: most recent date the row was locally updated.

In general, it contains all the information needed by any protocol in the MADIS
repertoire. Hence, as all fields are maintained by the database manager, any such proto-
col is suitable to be plugged in deliberately.

In addition to meta tables, the table TrReport is defined, containing a log of all
transactions, with the following attributes:

– tr id: transaction identifier; part of primary key.
– global id: global row identifier; part of primary key.
– field id: optional accessed field identifier; part of primary key.
– mode: access mode (read/insert/delete/modify).

For each transaction τ , one record for each field of each row involved in τ is
maintained in TrReport. Once a transaction τ is committed, the consistency manager
eliminates any information related to τ from TrReport. Note that several MVCC-based
DBMSs do not use locks with row granularity, but block access to entire pages or even
tables. Such systems must use multiple “per transaction” temporary TrReport tables.

www.manaraa.com

A Middleware Architecture for Supporting Adaptable Replication 35

4.2 Triggers

The set of trigger definitions introduced by MADIS in the schema can be classified into
three groups:

– Writeset managers for collecting information related to rows written by transac-
tions.

– Readset managers for collecting information related to rows read by transactions;
their inclusion is optional and depends on the replication protocol being used.

– Metadata automation for updating meta data in meta tables.

The writeset collection uses, for each table Ti in the original schema, triggers which
insert information related to write-accesses to Ti at transaction time in TrReport.

The following example shows such a trigger, for the insertion into mytab (say).
With getTr id(), it gets the transaction’s identifier. A row is inserted in the TrReport
table for each insertion to mytable, in order to keep track of the transaction. Deletions
and updates are handled analogously.

CREATE TRIGGER WSC insert mytab
BEFORE INSERT ON mytab
FOR EACH ROW EXECUTE PROCEDURE
tr insert(mytab,getTrid(),NEW.l mytab id)

Collecting readsets is optional, due to high costs and also because some protocols
can do without readsets. Costs are high since the implementation must laboriously com-
pensate for a lack of a TRIGGER . . . BEFORE SELECT construct in the SQL-99 standard.

Another group of triggers is responsible for the meta data management. Whenever a
row is inserted, such a trigger also inserts the row in the meta data table Meta Ti. Since
the row’s global id (i.e. the global identifier of the new data item), can be generated
from the row’s node creator identifier and a local sequence value in the creator node
(maintained in another MADIS meta table), all fields in Meta Ti can be filled without
intervention of any consistency protocol.

Whenever a row is accessed in write mode, another MADIS trigger updates the meta
data of that row in the corresponding meta table, i.e., it updates the version, the trans-
action identifier, and timestamp of the record in the given meta data table. Conversely,
whenever a row is deleted, the corresponding meta data row is also deleted, by yet
another MADIS trigger.

In summary, MADIS adds, for each table, three triggers, of type BEFORE INSERT,
BEFORE UPDATE, BEFORE DELETE, which cater for transaction report management
and meta data maintenance. Optionally, for readset management, the INSTEAD OF
trigger construct must be used, for redirecting write accesses to appropriate tables.

5 Implementing Replication as a JDBC Driver

MADIS makes use of ready-made SQL functionality for consistency management.
Automatically generated database triggers collect information about accesses at trans-
action time for the CM, which in turn is independent of the DBMS. Thus, the CM can be

www.manaraa.com

36 J.E. Armendáriz et al.

ported from one platform to another with minimal effort. This Section sketches a Java
implementation of CM and how it makes use of the MADIS schema modification.

In our prototype, a JDBC driver encapsulates an existing PostgreSQL driver, for in-
tercepting user application requests. They are augmented to new request for taking care
of the meta data associated to the arguments of the requests. Meta data handling is com-
pletely hidden from users and applications. The plugged-in protocol is notified about
any application request to the database, including query execution, row recovery, trans-
action termination (i.e. commit/rollback), etc. Thus, the protocol can easily accomplish
its tasks regarding replication consistency.

MADIS intercepts queries by encapsulating the Statement class. Responding to cre-
ateStatement or prepareStatement calls, MADIS generates statements that take care of
query execution. For each user application query request, MADIS calls the processState-
ment() operation of the currently plugged-in protocol. The latter updates the transaction
report, and may modify the statement by adding the patches needed to retrieve some
meta data. However, such modifications are only needed by a few consistency proto-
cols, since the meta data can be retrieved from the report tables, once the original query
has been completed. Optimistic consistency protocols do not need such meta data be-
fore the transaction has requested a commit. The query execution process is shown in
Fig. 3. Figure 4 describes the update control flow.

Whenever, for a transaction, the user or application requests a commit or when a
rollback is invoked, MADIS notifies the protocol, which thus has the opportunity to in-
volve any replica nodes for satisfying the request. If the protocol concludes its activity

madis.Statement

mS postgressql.

Statement

pS

madis.Coremadis.

ResultSet
postgresql.

ResultSet

madis.Protocol

pR

mR

mR

<<create>>(pR)

parseQuery(trid, sql) processQuery(sql_tree)

executeQuery(sql)

executeQuery(sql’)

toRead(oid)

sql’
sql_tree’

pR

next()
next()

next(oid)

<<create>>

Fig. 3. Query Execution

www.manaraa.com

A Middleware Architecture for Supporting Adaptable Replication 37

madis.Statement

mS

postgressql.
Statement

pS

madis.Core

executeUpdate(sql)
parseUpdate(trid, sql)

numrows

madis.Protocol

processUpdate(trid, sql_tree)

sql_tree’

sql’

executeUpdate(sql’)

numrows

executeQuery(sql2)

postgressql.
Connection

pC

ResultSet: oids[]

Fig. 4. Update Execution

with a positive result, then the transaction is ready to commit in the local database, and
the CM is notified accordingly, who in turn responds to the user application. Any neg-
ative result obtained from the protocol will be notified directly to the application, after
the abortion of the local transaction. Similarly, rollback() requests are also intercepted,
redirected to the CM and forwarded to the protocol.

6 Performance Evaluation

A key idea of our architecture is that, instead of the protocols, the DBMS is responsible
for generating and maintaining the information needed by the protocols for accom-
plishing consistency maintenance, concurrency control and update propagation. Now,
questions arise about the costs of storage space and computation time of this solution,
which involves several schema modifications and additional queries, resulting in some
overhead. In Sect. 6.1 we display performance evaluation results for MADIS and in
Sect.6.2 we compare MADIS with other related approaches.

6.1 Measuring MADIS

The overhead of storage space needed for the schema modification (i.e., definitions
of views, triggers and stored procedures) is marginal. The main portion of space con-
sumption is due to the Meta Tj tables. Apart from containing two identifiers (local and
global object id), these tables allocate space for the meta data of each of the pluggable
protocols in the MADIS repertoire. These include transaction identifiers, timestamps,
sequential version numbers and transaction reports. The space needed for that is eas-
ily afforded, since it scales linearly with the product of the number of protocols and
transactions.

Some computational overhead is generated by additional SQL statements and cal-
culations executed by MADIS for each database access. Insertions (I), Updates (U) and

www.manaraa.com

38 J.E. Armendáriz et al.

deletions (D) involve additional insertions in the TrReport table, plus some operations
on corresponding Meta Tj tables. The overhead for select statements depends on the
protocol. In most cases, the readset collection can be performed by the middleware.
amounting to nothing more than including the local id in the SELECT clause of the
SQL statements to be executed. Below, we discuss the overhead introduced in I, U and
D operations in more detail. For a fair evaluation, we used a very simple protocol, in
order to focus on the overhead introduced by the architecture.

Test runs consisted in executing a Java programme, accessing the database via
JDBC. The programme has two parameters: numtr, the number of transactions to be
executed, and numrows, the number of rows to be manipulated by each transaction. The
schema used in the test runs contains the four tables CUSTOMER, SUPPLIER, ARTI-
CLE and ORDER. Each article references a row in the SUPPLIER table. Each ORDER
references a CUSTOMER row and an ARTICLE row. Each table contains an additional
varchar[30] field for item description.

overhead (in ms)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

-20

 0

 20

 40

 60

 80

 100

 120

 140

ms

Fig. 5. MADIS absolute overhead (in ms)

After establishing the database connection and the extended schema, each test run
executes some “training” transactions, including the loading of all Java classes needed.
Then, the time taken by numtr sequential transactions (performing a number of inser-
tions, updates or deletions depending on the required measurement) is measured. This
yields the total cost of the numtr transactions of type I, U and D, respectively. For ac-
curately capturing the overhead, we measured the absolute and relative time needed per
transaction as it is shown in Figs. 5 and 6.

The results stabilised with a few number of transactions, which indicates that the
system does not suffer appreciable performance degradation over time. In addition,
Fig. 5 shows that the overhead per transaction is always lower than 80ms in our ex-
periments. Figure 6 shows that the size of the numrows parameter is negligible (i.e.,
the system scales well when the number of table rows grows) for any of the transac-
tion types I, U and D. It turned out that the MADIS database core introduces a limited

www.manaraa.com

A Middleware Architecture for Supporting Adaptable Replication 39

overhead (in %)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 100

 200

 300

 400

 500

 600

 700

%

Fig. 6. MADIS relative overhead (in %)

overhead for insertions and update operations. Deletions, however, may produce a log-
arithmic, though non-negligible performance degradation. For instance, deleting 6000
rows took about 6 times more time as the same deletions in the unmodified schema.

6.2 Other Approaches

The middleware COPLA [10] of the GlobData project [14] was used as an R&D platform
on which several replication protocols were developed and implemented. COPLA also
permits the pluggability of protocols, but, as opposed to MADIS, only at well-defined
breakpoints between different sessions, i.e., not on the fly. In particular, there was no

overhead (in %)

COPLA I
COPLA U
COPLA D

 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 5000

 10000

 15000

 20000

 25000

 30000

%

Fig. 7. Relative COPLA/MADIS overhead

www.manaraa.com

40 J.E. Armendáriz et al.

overhead (in %)

RJDBC I
RJDBC U
RJDBC D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

%

Fig. 8. Relative MADIS/RJDBC overhead

simultaneous management of meta data for several protocols. Moreover, the meta data
management for the plugged-in protocol was not handled via a schema extension,but
was integrated within the protocol’s code. This, together with a burdensome mapping
from an object-oriented user interface to the underlying relational database structures
resulted in a costly performance. For comparing MADIS with COPLA, we ran the same
transactions in equivalent configurations. As shown in Fig. 7, the scalability of COPLA
for update and delete operations was 50 and, respectively, 200 times more costly than
in MADIS.

We also compared MADIS to RJDBC [2], which effectively constitutes a lower bound
of achievable results. In RJDBC, no metadata are maintained. Instead, all requests to the
database are just broadcast to each node in the network. When there is only one node
(as in our experiment), the system introduces a minimal overhead for managing the
requests. Figure 8 shows that the overhead remains stable, i.e., it is proportional to the
number of accessed rows. However, it is also shown that the overhead introduced for I
and U operations is comparable to the one introduced by MADIS. Thus, as the RJDBC
architecture only allows a unique eager, pessimistic, and linear replication protocol, it
will not scale well with regard to the number of connected nodes.

7 Related Works

As already seen in the previous Section, there are many systems with the same objec-
tives as MADIS. Some of them have been implemented by our research groups, like
COPLA [10] and RJDBC [2], that have been compared above with MADIS. Other re-
lated works are described in this section.

With regard to meta data, replication approaches can be classified as middleware-
based (all work is done by a database-external middleware), trigger-based (meta data
are collected by triggers and calls to external procedures), shadow-table-based (using

www.manaraa.com

A Middleware Architecture for Supporting Adaptable Replication 41

shadow copies to build update messages for replicas), and control-table-based
(timestamping each row). Benefits and drawbacks of each are discussed in [15, 16].
Therefore, MADIS is enclosed inside the middleware-based approach.

In Postgres-R and Dragon [12, 17], a DBMS core is modified to support distribu-
tion. This approach strongly depends on the underlying DBMS thus being not portable,
and must be reviewed for each new DBMS release. However, its performance is gen-
erally better than a middleware architecture. Recently, these systems have been ported
to a middleware architecture [13], introducing a minimal support in the DBMS core
in order to access its internal redo-logs for obtaining (or applying) the writesets of the
currently executing transactions (or those of the remote transactions that have been lo-
cally delivered, respectively). This core support also simplifies a lot the work to be
done in the middleware, reducing the overall costs needed for such a management, at
least when compared to our MADIS approach that uses triggers to this end. As a result,
this Postgres-R evolution has better performance than MADIS, but MADIS only uses
standard SQL features and is easier to port to other DBMSs.

Solutions based on Java, implemented as JDBC drivers, can be found in C-JDBC
[1, 4] and RJDBC [2]. The latter has been already described above. The former empha-
sises load balancing but is also able to provide support for fault-tolerance. To this end,
this system is able to make checkpoints of the current state of the replicated database
and it also uses a recovery log for bringing failed replicas up-to-date when they recover.
Moreover, in the regular executions of the system, all update operations are delivered
to all existing replicas, whilst read operations only access one of the replicas, using a
load balancer for improving the overall system performance. C-JDBC also shares with
MADIS its easy portability to different platforms and DBMSs, since it only needs a
JDBC native driver for accessing the underlaying databases, and it uses standard JDBC
features.

Progress DataXtend RE (formerly known as PeerDirect) [15] uses triggers and pro-
cedures for replication, but no other than a predefined protocol is usable in that system.
Additionally, the new editions of this software have migrated their focus to mobile envi-
ronments, being able to provide different levels of consistency among the set of replicas
of a given piece of data.

Finally, ORION Integrator [7] is another commercial tool that also provides support
for data replication and integration. However, its aim is not exactly the same as that of
the previously discussed research projects [1, 10, 17] or commercial products. It is simi-
lar to them, since it also provides support for replication, but it needs that each replicated
item has a source replica and one or many target replicas, configured as such. On the
other hand, this product is able to achieve an easy integration of different DBMSs, i.e.,
different replicas may use different underlying DBMSs. Its core engine is able to trans-
late the data when it is being propagated in order to store it in the appropriate format
for its target DBMS.

8 Conclusion

Data replication is an effective means to enhance performance, fault-tolerance, avail-
ability, and thus dependability, of enterprise applications. Different applications require

www.manaraa.com

42 J.E. Armendáriz et al.

different kinds of replication management. Hence, an adequate choice of appropriate
protocols is due. Hence, a middleware which provides flexible support for choosing,
plugging in, operating and exchanging suitable protocols is desirable for many applica-
tions. This innovative kind of pluggability is being realized in MADIS. It has an ample
repertoire of replication protocols, each with particular consistency guarantees, from
which suitable ones can be chosen, plugged in and exchanged on the fly. The imple-
mentation makes use of standard SQL-99 constructs such as table alterations, views,
constraints, triggers and stored procedures. That way, protocols can be developed and
implemented much more efficiently than in comparable middleware packages, where
the meta data management for maintaining the consistency of replicated data either
is opaquely intertwined in the protocol’s code or, worse, is hidden in the application
code. Moreover, the protocol’s structure becomes much more elegant and concise when
the meta data management is largely delegated to the underlying DBMS, as in MADIS.
These conceptual advantages have been verified by experimental measurements.

Experimental results of the prototype implementation appear in [9], and more im-
plementation details in [8]. The project DeDiSys [5] currently serves as a benchmarking
scenario for MADIS.

The ease of developing new protocols is expected to bear fruit also for an envis-
aged extension of the middleware with functionality for supporting mobile users. This
requires the development of new protocols with enhanced capabilities of coping with
more unstable networks, narrower bandwidths, greater heterogenity of platforms and
devices, etc.

References

1. E. Cecchet, J. Marguerite, W. Zwaenepoel. C-JDBC: Flexible database clustering middle-
ware. Proc. of the FREENIX Track: 2004 USENIX Annual Technical Conference, Boston,
MA, USA. 9-18, July 2004.

2. J. Esparza, F. Muñoz, L. Irún, J. Bernabéu: RJDBC, a simple database replication engine.
Proc. 6th ICEIS, 587-590, 2004.

3. J. Gray, P. Helland, P. O’Neil, and D. Shasha: The dangers of replication and a solution.
Proc. ACM SIGMOD, 173-182, 1996.

4. http://c-jdbc.objectweb.org, downloaded 19 October 2005.
5. http://www.dedisys.org, downloaded 19 October 2005.
6. http://www.iti.upv.es/madis/, downloaded 19 October 2005.
7. http://www.orionintegrator.com, downloaded 19 October 2005.
8. L. Irún, J. Armendáriz, H. Decker, J. González de Mendı́vil, F. Muñoz: Replication Tools

in the MADIS Middleware. Proc. VLDB’05 Workshop on Design, Implementation and De-
ployment of Database Replication, 25-32, 2005.

9. L. Irún, H. Decker, R. de Juan, F. Castro, J. Armendáriz, F. Muñoz: MADIS: A Slim Mid-
dleware for Database Replication. Proc. 11th Euro-Par, LNCS 3648, 349-359, 2005.

10. L. Irún, F. Muñoz, H. Decker, J. Bernabéu: COPLA: A Platform for Eager and Lazy Repli-
cation in Networked Databases. Proc. 5th ICEIS, Vol. 1, 273-278, 2003.

11. B. Kemme: Database Replication for Clusters of Workstations. PhD thesis, ETH Zurich,
2000.

12. B. Kemme, G. Alonso: A Suite of Database Replication Protocols based on Group Commu-
nication Primitives. Proc. Distributed Computing Systems, 156-163, 1988.

www.manaraa.com

A Middleware Architecture for Supporting Adaptable Replication 43

13. Y. Lin, B. Kemme, M. Patiño-Martı́nez, R. Jiménez-Peris. Middleware Based Data Replica-
tion Providing Snapshot Isolation Proc. ACM SIGMOD, 419-430, 2005.

14. F.D. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J.M. Bernabéu-Aubán, J. Bataller, and M.C.
Bañuls: GlobData: Consistency Protocols for Replicated Databases. Proc. YUFORIC’2001,
97-104, 2001.

15. Overview & Comparison of Data Replication Architectures. Peer Direct whitepaper, Nov.
2002.

16. Replication Strategies: Data Migration, Distribution and Synchronization. Sybase whitepa-
per, Nov. 2003.

17. S. Wu, B. Kemme: Postgres-R(SI): Combining Replica Control with Concurrency Control
based on Snapshot Isolation. Proc. IEEE ICDE, Tokio, Japan, Apr. 2005.

www.manaraa.com

MDA and Analysis of Web Applications

Behzad Bordbar and Kyriakos Anastasakis

School of Computer Science, University of Birmingham,
Birmingham, B15 2TT, UK

{B.Bordbar, K.Anastasakis}@cs.bham.ac.uk

Abstract. Enterprise systems are mission critical. As a result, ensuring
their correctness is of primary concern. This paper aids to the analysis
of Web applications, focusing on the aspects related to the interaction
of business logic and Web browsers. The method adopted is based on
the Model Driven Architecture. First, the Platform Independent Model
of Web applications is refined to create a new model called Abstract
Description of Interaction (ADI). An ADI is a UML class diagram anno-
tated with OCL statements to represent an abstraction of the interaction
between the thin client and the business logic. Secondly, the ADI model
is automatically transferred to an Alloy model and analysed using the
Alloy Analyser.

1 Introduction

Over the past two decades Web applications have become increasingly vital, af-
fecting almost all aspects of our daily life such as banking, retail, information
gathering, entertainment and learning. Such applications are mostly mission crit-
ical [1]. Hence, ensuring the correctness of the specification and implementation
is a primary concern and has received considerable attention [2, 3, 4]. To analyse
these systems, it is important to create a formal model. For example, [2] uses
μ-calculus to represent the model, while [3] makes use of a variant of automata
as the analyzable model. Stotts and Navon [4] present a model based on Petri
nets. Our approach makes use of MDA [5, 6, 7] transformations to automatically
create the analysable model. Existing approaches [2, 3, 4] either consider static
Web sites or analyse applications that have already been implemented. In con-
trast we use a formalism [8], which is ideal [9] for the analysis of the models of
object oriented systems, such as Web applications.

This paper aids to the analysis of Web applications [10]; software applica-
tions, which are accessed via Web browsers. In particular, we are interested in
identifying bugs such as the Amazon bug [11] and the Orbitz bug [12], which are
created as a result of the interaction between browsers and the business logic.
Figure 1 sketches our approach.

The MDA [5, 6, 7] emphasises on the role of models by capturing high level
abstraction of the system that is independent of any implementation platform,
called Platform Independent Model (PIM). A PIM is then transformed to one
or more Platform Specific Model (PSM) via an MDA tool. A PSM specifies the

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 44–55, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

MDA and Analysis of Web Applications 45

Fig. 1. Implementation and Analysis via MDA

system in a particular implementation technology, platform and paradigm. There
are already commercial [13] and non-commercial [14] MDA tools facilitating the
implementation of a large part of the code on various choices of platform and
programming languages. To analyse the model, the PIM has to be refined and
abstracted to create a new PIM which we shall refer to as Abstract Description
of Interaction (ADI). The ADI is a class diagram [15] with a set of OCL [16]
constraints and pre and post condition expressions, that describes the interaction
of the browser and the business logic in an abstract way. The ADI model can be
translated to a model in Alloy [8] and analysed by the Alloy Analyser [17]. We
have implemented the transformation from the UML to Alloy in a tool called
UML2Alloy [18, 19].

The paper is organised as follows. Section 2 presents a brief introduction
to MDA, Alloy and UML2Alloy. Section 3 sketches a method for the creation
of the ADI. To demonstrate our approach, Sect. 4 analyses an example of an
e-commerce system. Finally in Sect. 5 we sketch the related work and future
direction, while Sect. 6 provides the conclusions of our work.

2 Preliminaries

Model Driven Architecture (MDA) [5, 6, 7] is a framework proposed by the Ob-
ject Management Group [20]. Central to the MDA is the idea of model trans-
formation, which maps models in a source language into a model expressed in a
destination language. Models in the MDA are instances of metamodels. A meta-
model is in effect a model that describes another model. The Meta Object Facility
(MOF) [21] specifies the layered architecture that the MDA follows, where each
model is an instance of its metamodel. As depicted by Fig. 2, an MDA trans-
formation is defined from the source metamodel to the destination metamodel.
Then every model, which is an instance of the corresponding metamodel, can be
transformed to an instance of the destination metamodel. For example, to map a
UML class diagram to Alloy, an MDA transformation that maps the metamodel
of Class diagrams to the metamodel of the Alloy language is required. An MDA
tool is a tool that implements a model transformation. In other words, it receives

www.manaraa.com

46 B. Bordbar and K. Anastasakis

Fig. 2. Model transformation in the MDA

a description of the metamodels of the source and destination and a specifica-
tion of the model transformation rules and for every model that conforms to the
source metamodel, it generates a corresponding model, which is an instance of
the target metamodel.

2.1 Alloy

Alloy [8] is a textual modelling language based on first order predicate logic [22].
An Alloy model is made of a number of Signatures, which describe the entities in
the model. Signatures are similar to classes in a UML class diagram. For example
a Signature can define Fields which are like Attributes of classes in UML class
diagrams.

There are also three major kinds of expressions in an Alloy model. A Fact is
an expression that every instance of a model satisfies. Predicates and Functions
are like functions in an object oriented programming language. They can be
invoked from other parts of the model. Finally an assertion is a statement that
the modeller wants to check for its validity. Alloy models are analysable and
Alloy Analyzer [17], which is an implementation supporting the Alloy language,
can present a counterexample if an assertion is violated.

Alloy tackles the state explosion problem [23] by introducing scoped analysis.
A scope is the maximum number of stages the Alloy Analyzer probes to ensure
the validity of an assertion or to find the existence of counterexamples. If the
Alloy Analyzer fails to come up with a counterexample, the assertion may be
valid. The bigger the scope is, the more confident the modeller is that his model
is correct. For further details on the Alloy language the interested reader is
referred to [8].

2.2 Analysis of UML Models Via UML2Alloy

The UML is a family of languages that is prevailing in the modelling and speci-
fication of object oriented systems. The UML defines a number of diagrams [15],
some of which depict the static structure of a system, while others the dynamic
aspect. In this paper, we shall make use of UML class diagrams to model the
static structure of a system. We shall describe the behaviour of the system via
OCL [16]. OCL is a textual language that adds formalism to UML diagrams. It
can be used to define the behaviour of a model (with the use of preconditions

www.manaraa.com

MDA and Analysis of Web Applications 47

and postconditions) or to express constraints (using invariants) on the elements
of a UML model.

Based on the MDA, we have developed a CASE tool called UML2Alloy for
automating the translation of UML models to the corresponding Alloy mod-
els. Figure 3 depicts the sequence of steps involved in the transformation. The
starting point is to create a UML model of the system in a UML CASE tool
such as ArgoUML [24]. Most UML tools, including ArgoUML, can export the
UML model to an XMI [25] format. XMI, which stands for XML Metadata In-
terchange is an OMG standard used by most UML tools to store, import and
export UML models. UML2Alloy implements the transformation and generates
an Alloy model from the XMI file. The Alloy model of the system can then be
analysed with the Alloy Analyser [17]. For further details on UML2Alloy, we
refer the reader to [18, 19].

Fig. 3. Process of Analysis of UML models via UML2Alloy

In the following Section we shall present a method of verifying enterprise
Web applications with the help of UML2Alloy.

3 Analysis of the Interaction Between a Browser and
Business Logic

A Web application is a software application that is accessible via a thin client
(Web browser). Web applications often consist of multiple tiers; the presentation
tier (Web server), application tier (business logic) and resource management
(data) tier. Web applications render Web pages, comprising of different kinds
information (e.g. text, images, forms) and are accessed via Web browsers. Web
pages can be static (i.e. residing on a Web server) or dynamic (i.e. modifiable
as a result of the execution of various scripts and components at the client or
the server). As a result models of Web applications are very large and complex,
involving numerous components. Consequently, to conduct any realistic analysis,
it is crucial to get rid of the unrelated information and create an abstract model
capturing the interaction between the browser and the business logic. To do so,
we shall introduce a new class model called Abstract Description of Interaction
(ADI). The following sketches the steps involved in the creation of the ADI.

www.manaraa.com

48 B. Bordbar and K. Anastasakis

Browser Container

Data
BusinessLogic

+display

0..1

+previous

0..*

+data

0..*

+data

Fig. 4. A template for Abstract Description Interaction

1. Browser class: A model of the browser with its related functionality, such as
navigating between various pages using the back and forward buttons. The
browser class is an abstract model of the browser.

2. Container class: Models the generic functionality of the Web pages compris-
ing of data that can be dynamically altered from the user interface.

3. BusinessLogic class: An abstraction of the part of the business logic that
relates to browser and its data content.

4. Data class: Describing the abstraction of the data that is exchanged between
the server and the browser usually as fields of forms of Web pages.

Figure 4 represents the interaction between the above classes inspired by the
general form of Web applications, in which:

– A Browser displays a Container.
– A Container can have a previous Container. To simplify we have not included

a next Container.
– A Browser interacts with the BusinessLogic.
– A Container displays Data units
– A BusinessLogic deals with a number of Data units.

The template of Fig. 4 and the steps sketched above can allow the modeller
to probe the PIM and create the ADI. Platform Independent Models of Web ap-
plications are large and complex. Hence, finding methods of a partial automation
of the creation of the ADI is of paramount importance. Since the creation of the
ADI involves the projection of the model and the deletion of unrelated model
elements, we speculate that it might be possible to mark unrelated model ele-
ments on the PIM and refactor [26] the model to create the ADI, or a model near
enough to the ADI. However that remains an area for future research. For now, to
demonstrate examples of the creation of the ADI, we shall present a case study.

4 Analysis of an e-Commerce System: A Case Study

This case study is inspired by [27]. The class diagram of Fig. 5 represents a por-
tion of the PIM of an internet bookstore system, extracted from [27, p. 120–123],
which describes how the model of the system can be created following a process

www.manaraa.com

MDA and Analysis of Web Applications 49

Customer

+deleteItem(in i : Item)
+addItem(in i : Item)

+displayCost()
+onCheckout()

«boundary»
Shopping Cart Page

modify quantity

+delteItem(in i : Item)
+addItem(in i : Item)

«entity»
Shopping Cart -quantity

-cost

«entity»
Item

-datePlaced

-status

«entity»
Purchase Order

-title

-price

«entity»
Book-id

-datePlaced

-status

«entity»

Order

+display()
+onLogin()

«boundary»
Home

+display()
+onLogin()

+freeze()
+onReminderWord()

«boundary»
Login Page

Log In

Fig. 5. UML model of an online bookstore

called ICONIX. In ICONIX information which is presented in a browser is stereo-
typed as boundary. The information that belongs to the business logic is
stereotyped as entity.

Our aim is to analyse the interaction of the user, through the Web browser,
with the business logic of the the online bookstore system modelled by Fig. 5.
According to the method described in the previous Section, we have to get rid
of the classes that are not related to our aim (i.e. they do not contain any
functionality that affects the items in the shopping cart). It is obvious from the
model that those classes are the Home, the Login Page, the Book, Order and
Purchase Order. Of course depending on the business logic of the system, the
Purchase Order might affect the quantity of the items in the shopping cart (i.e.
the shopping cart might be emptied after the user has purchased an item), but
for reasons of simplicity we are not going to consider this case.

Therefore we are now left with the Shopping Cart Page, the Shopping Cart
and the Item classes. We now need to identify which of these classes are used
for displaying information on the browser of the user and which for the business
logic. However in our case study this is a trivial task as the classes that are
used for displaying information to the user are stereotyped as boundary and the
classes that are part of the business logic are stereotyped as entity. Therefore an
abstraction of the specification of the functionality of the Shopping Cart Page
will be used as the specification of the functionality of the Container. Similarly
an abstraction of the specification of the functionality of the Shopping Cart will
be used as the specification of the functionality of the ShoppingCart. The Items
are the Data the browser exchanges with the business logic. However even from
those classes we just need the functionality that changes the contents of the
shopping cart. Therefore we can safely get rid of some of the operations of those
classes, such as the displayCost() and onCheckout() of the Shopping Cart Page
class.

www.manaraa.com

50 B. Bordbar and K. Anastasakis

+back()

+forward()

Browser

+addItem(in i : Item)

+removeItem(in i : Item)

Container
Item

previous 0..1

+addItem(in i : Item)
+removeItem(in i : Item)

SC

*

*

Fig. 6. Abstract Description of Interaction: version 1

Following this reasoning, which is just a practical application of the method
described in the previous Section, we end up with the model of Fig. 6.

For practical reasons we had to refactor the model of Fig. 6. As OCL is a
language used purely for the specification of systems, it does not allow the speci-
fication of an operation to “call” another operation that is not a query operation.
A query operation is an operation that does not change the state of the system
during its evaluation (e.g. an accessor to an attribute). [16, p. 5] This means that
we are not allowed to “call” the addItem operation of the ShoppingCart from
within the addItem opeartion of the Container, since the former changes the
state of the system during its evaluation, by adding one item to the Shopping-
Cart. In order to overcome this constraint and for reasons of simplicity in the
model, we have moved the specification of the functionality of the operations of
the Container to the Browser class. We also consider a smooth communication
channel between the browser and the Web server. This enables us to also move
the specification of the addItem and removeItem of the Shopping Cart to the loa-
dItem and removeItem methods of the Browser respectively. This change to the
ADI does not affect the model of the functionality of the system and the altered
model that will be used for the analysis of the system is depicted in Fig. 7.

The Browser is related to a Container, which represents the Web page the
Browser displays. We are only interested in the items the user can buy from the
Web page. In the model those items are depicted with the cHasItems relation.
Those are the items in the shopping cart the user sees on his/her Web browser.
The Browser is also related with the SC, which is the shopping cart. The SC
represents the information held on the server regarding the items the user has
added in the shopping cart. The SC, like the Container, is related to zero or
more Items.

The Browser is a class that represents the Web browser the user uses to access
the Web site. The Browser class has three operations. The loadItem contains the

www.manaraa.com

MDA and Analysis of Web Applications 51

State

first

next

+loadItem(in i : Item) : Boolean
+removeItem(in i : Item) : Boolean

+back() : Boolean

Browser

Item

browser Container

previous0..1

display

SC

bl

scHasItems

0..*

cHasItems0..*

Fig. 7. Abstract Description of Interaction

specification that describes the functionality of the system when the user adds
an item, i to the shopping cart. More specifically the loadItem operation adds the
item to the collection of items the Container displays to the user as the shopping
cart and also adds it to the collection of items of the shopping cart that the server
holds for that session. It also causes a new Container to be displayed and the
old Container is set to be the previous of the currently displayed Container. In
principle this action adds the previously displayed Web page to the Web browser
history. The removeItem similarly contains the specification for the functionality
of the system when the user removes an item i from the shopping cart. The
invocation of the removeItem operation removes the item from the shopping
cart the browser displays, adds the page being displayed to the browser history
and invokes a communication with the Web server shopping cart informing it
that the item has been removed. The back() operation specifies the functionality
of the system, when the back button of the Browser is pressed. In particular it
causes the previous Container to be displayed, if any exists. Figure 8 depicts
the OCL specification of the back operation. It is important to note that the use
of the back button in any Web browser invokes the previous request sent to the
server and also uses cached information locally.

context Browser::back () pre: self.display.previous -> size > 0
post: self.display = self@pre.display@pre.previous@pre

Fig. 8. Behaviour of “back” button via OCL

State is a reserved class in UML2Alloy. Like any other class, UML2Alloy
transforms the UML class State to an Alloy Signature with the same name.
However if the State class exists in a model UML2Alloy makes use of the poly-
morphic ordering module distributed with the Alloy Analyzer, which provides
support for ordered sets. This is the standard way to achieve process modelling
in Alloy [28].

There is also an OCL expression related to the State class that depicts the
initial state of the system. In that state the shopping cart of the Container of

www.manaraa.com

52 B. Bordbar and K. Anastasakis

context State
State.allInstances -> forAll(s:State |
(s.browser.display.cHasItems -> exists(
i:Item |(
(s.next.browser = s.browser.loadItem(i))
or
(s . next . browser = s . browser . removeItem(i))
or
((s.next.browser = s.browser.back())
and (s.next.browser.bl = s.browser.bl))))))

Fig. 9. A portion if the behaviour of the model in OCL

the Browser does not display any items and the information about the shopping
cart that is held on the server does not have any items as well.

The behaviour of the model is depicted by the OCL statement of Fig. 9. The
statement defines that for all (∀) States s there exists (∃) at least one item i in
the model so that the next State s’ can be produced from the previous if either
the user adds an item to the shopping cart (the loadItem operation) or removes
an item (the removeItem operation) , or the “back” button of the browser is
pressed (the back() opeartion). In that case as explained before the interaction
with the server does not cause the information about the shopping cart that is
held on the server to change as depicted by the statement s.next.browser.bl =
s.browser.bl.

4.1 Produced Alloy Model

Figure 10 depicts the corresponding Alloy model for the OCL statement of Fig. 9.
Naturally, forAll and exists of OCL are mapped to all and some. Moreover, the
subsequent state of s, i.e. s.next, is mapped into the state s′ : ord/next(s).
However, automated transformation from OCL to Alloy is far from trivial. In
OCL, the invocation of an operation is achieved when navigating to the class
that owns the operation, and then “calling” the operation. In contrast, Alloy
predicates and functions are visible to the whole model. Therefore, during the
transformation all OCL statements that invoke operations from another class
had to be tailored so as to translate only the part that calls the operation.
It can also be noted that more parameters have been added to the loadItem,
removeItem and back() operations. This is the usual pattern of specifying pre
and post conditions in the Alloy language. For further details regarding the
transformation from OCL to Alloy, we refer the reader to [19].

all s: State ,s’:ord/next(s)| some i:Item |
(loadItem(s.browser,s’.browser,i)) ||
(removeItem(s.browser,s’.browser,i)) || (back(s.browser,s’.browser)
&&

(s’.browser.bl=s.browser . bl))

Fig. 10. Alloy model of the behaviour

www.manaraa.com

MDA and Analysis of Web Applications 53

4.2 Results of the Analysis

A major requirement of the model depicted by Fig. 7 is to guarantee the integrity
of the system by ensuring that the contents of the shopping cart and the list of
items on the browser are identical. This can be expressed by the Alloy assertion
of Fig. 11. Using Alloy Analyzer we can see that the assertion fails. In fact, setting

all s: State | s.browser.display.cHasItems = s.browser.bl.scHasItems

Fig. 11. Alloy assertion for checking shopping cart against the displayed items

the Alloy scope to three, results in a counterexample, which means, there is at
least one instance in three evolutions of the system where the items listed in the
browser window differ from the items in the shopping cart.

Using Alloy Analyzer the modeller can see not only the instance that violates
the assertion, but also all of the traces in the evolution of the system that lead
to the violation of the assertion. That way it is easier to locate the inconsistency
in the model. The steps to reproduce the bug according to our analysis are the
following:

Step 1. The shopping cart of the user is empty and the user browses the Web
site.

Step 2. The user adds an item Item1 to the shopping cart.
Step 3. The user decides that he does not want to buy Item1 after all, but

instead of deleting it from the shopping cart he presses the “back”
button to return to the previous shopping cart which is empty.

Comparing the result of our analysis with the motivating observation of the
paper [11], we can notice that the bug can occur following a different trace from
the one described in [11], but again it involves the use of the “back” button. To
remove such bugs, [11] presents a set of solutions. Analysing such solutions is
outside of the scope of the paper. However, our method can equally be used to
conduct such analysis.

5 Related and Future Work

Because of the state explosion problem [23] and undecidability issues, it is not
possible to fully analyse large systems, such as enterprise Web applications.
A method to overcome this problem is to either partially analyse the system,
focusing on different aspects of the system every time or to abstract the model
that represents it. Using this approach we have decided to focus on the analysis
of the ADI, an abstract view of the part of model of the system that depicts the
interaction between the user and the business logic. Such analysis increases our
confidence of the correct functionality of the system. We are currently working
on methods of creating the ADI via semi-automated methods, using refactoring
methods [26].

www.manaraa.com

54 B. Bordbar and K. Anastasakis

A highly promising direction is to adopt form-based approach [29]. Form-
charts as a formalism developed for the modelling of form-oriented applications
is ideal for capturing the interaction of the user interface with the business logic.
As a result, it might be possible to use MDA transformations to create a suitable
formchart from which the ADI can be inferred. However, this remains a subject
for future work.

6 Conclusions

This paper aids to the analysis of enterprise Web applications. The method
adopted draws on the Model Driven Architecture. The Platform Independent
Model of systems can be used to create the ADI model, an abstraction of the
interaction between the browser and the business logic of the system. In order
to analyse the ADI, we apply a further MDA transformation and create a cor-
responding Alloy model. The paper demonstrates that analysing the ADI, it is
possible to identify a group of bugs, such as the Amazon bug [11]. Finally the
approach presented in the paper is explained via an example of an e-commerce
system.

References

1. Fowler, K.: Mission-critical and safety-critical development. IEEE journal of In-
strumentation & Measurement Magazine 7 (2004) 52– 59

2. de Alfaro, L.: Model checking the world wide web. In: Computer Aided Verifi-
cation, 13th International Conference, CAV 2001, Paris, France, July 18-22, 2001,
Proceedings. Volume 2102 of Lecture Notes in Computer Science. (2001) 337–349

3. Haydar, M., Petrenko, A., Sahraoui, H.A.: Formal verification of web applications
modeled by communicating automata. In: Proceeding of Formal Techniques for
Networked and Distributed Systems - FORTE 2004, 24th IFIP WG 6.1 Interna-
tional Conference, Madrid Spain, September 27-30, 2004. Volume 3235 of Lecture
Notes in Computer Science. (2004) 115–132

4. Stotts, D., Navon, J.: Model checking cobweb protocols for verification of html
frames behavior. In: Model checking cobweb protocols for verification of HTML
frames behavior. (2002) 182 –190

5. MDA: Model Driven Architecture website: http://www.omg.org/mda
6. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-

ing. Wiley Publishing, Indianapolis, Indiana (2003)
7. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture

- Practice and Promise. The Addison-Wesley Object Technology Series. Addison-
Wesley (2003)

8. Jackson, D.: Alloy 3.0 Reference Manual (May 2004) Software Design Group, MIT
Lab for Computer Science, http://alloy.mit.edu/beta/reference-manual.pdf.

9. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology (TOSEM) 11 (2002) 256–290

10. W3C: W3C website: http://www.w3.org/

www.manaraa.com

MDA and Analysis of Web Applications 55

11. Baresi, L., Denaro, G., Mainetti, L., Paolini, P.: Assertions to better specify the
amazon bug. In: SEKE ’02: Proceedings of the 14th international conference on
Software engineering and knowledge engineering, New York, NY, USA, ACM Press
(2002) 585–592

12. Licata, D.R., Krishnamurthi, S.: Verifying interactive web progams. In: 19th IEEE
International Conference on Automated Software Engineering (ASE 2004), Linz,
Austria, IEEE Press (2004) 164–173

13. Interactive Objects: Archstyler website: http://www.interactive-objects.com/
14. AndroMDA: AndroMDA website: http://www.andromda.org/
15. Object Management Group: UML 2.0 Superstructure Final Adopted Specification.

Document id: ptc/03-08-02. http://www.omg.org/docs/ptc/03-08-02.pdf.
16. Object Management Group: UML 2.0 OCL Final Adopted Specification. Document

id: ptc/03-10-14. http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 .
17. Alloy Analyzer: Alloy Analyzer website: http://alloy.mit.edu/
18. UML2Alloy: http://www.cs.bham.ac.uk/\simbxb/UML2Alloy.php
19. Bordbar, B., Anastasakis, K.: UML2Alloy: A tool for lightweight modelling of

Discrete Event Systems. In Guimarães, N., Isáıas, P., eds.: IADIS International
Conference in Applied Computing 2005. Volume 1., Algarve, Portugal, IADIS Press
(2005) 209–216

20. Object Managemenet Group (OMG): OMG website: http://www.omg.org
21. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification.

Document Id: ptc/03-10-04. http://www.omg.org/cgi-bin/apps/do doc?ptc/
03-10-04.pdf

22. Jackson, D.: Automating first-order relational logic. In: SIGSOFT ’00/FSE-8:
Proceedings of the 8th ACM SIGSOFT international symposium on Foundations
of software engineering, New York, NY, USA, ACM Press (2000) 130–139

23. Valmari, A.: The state explosion problem. In: Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets. Volume 1492 of LNCS., London, UK, Springer-Verlag (1998) 429–528

24. ArgoUML: ArgoUML website: http://argouml.tigris.org/
25. Object Management Group: UML 2.0 Diagram Interchange Final Adopted Speci-

fication. Document Id:ptc/03-09-01. http://www.omg.org.
26. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: improving

the design of existing code. Addison-Wesley, Boston, MA, USA (1999)
27. Rosenberg, D., Scott, K.: Applying Use Case Driven Object Modeling with UML:

An Annotated E-Commerce Example. Addison-Wesley Object Technology Series.
Addison-Wesley (2001)

28. Wallace, C.: Using Alloy in process modelling. Information and Software Technol-
ogy 45 (2003) 1031–1043

29. Draheim, D., Weber, G.: Form-Oriented Analysis: A New Methodology to Model
Form-Based Applications. Springer-Verlag, Berlin, Germany (2005)

www.manaraa.com

A Message Exchange Architecture
for Modern E-Commerce

Barry Dowdeswell1 and Christof Lutteroth2

1 AARN Innovation Limited,
P.O.Box 82-171, Highland Park, Auckland, New Zealand

barry@aarn.biz
2 Department of Computer Science, The University of Auckland,

38 Princes Street, Auckland 1020, New Zealand
lutteroth@cs.auckland.ac.nz

Abstract. This paper describes the EDIS business messaging architec-
ture, which is a modern, lightweight system that is used in numerous
companies. It explains the requirements for such a system, the problem-
atic issues that have to be dealt with, and also some aspects of the wider
context of e-commerce. Furthermore, it compares the presented archi-
tecture to similar systems like, for example, MS BizTalk and discusses
related research on enterprise architecture.

1 Introduction

In the business world, computers have been used since the 50’s and have become
an important tool for modern business. All the large enterprises rely heavily on
systems for enterprise resource planning (ERP) which integrate and automate
many of their administrative tasks. In the 90’s the focus of enterprise computing
shifted to the Internet, and the idea to use the net in order to make business
with customers (B2C) ended in heavy losses for many investors and companies. In
the last years another aspect has come to general attention: computer-supported
business between businesses (B2B). Again, the Internet is supposed to bring rev-
olutionary changes to the enterprise world, and this alleged revolution is heralded
by a plethora of new standards trying make their way into the enterprise.

When looking at these things from a scientific perspective, it is extremely im-
portant to distinguish between fact and hype, between what technologies are and
what people want them to be. For all what it seems, computer supported B2B
is an old concept that dates back to the 80’s. At that time, the main standards
defining the format of business messages were that of electronic data interchange
(EDI) [8], and the infrastructure on which these messages were transported were
value-added networks (VANs). Although it may seem, with the emergence of
XML-based data formats and the web services technology [15], that EDI is out-
dated, one has to acknowledge that the overwhelming majority of B2B traffic
is still done using the old standards. These technologies worked successfully for
twenty years now, while most new standards have still to prove themselves. And

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 56–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

A Message Exchange Architecture for Modern E-Commerce 57

no matter how mature new standards will turn out to be, the old standards will
continue to be used for quite some years to come.

The system described in this paper is one for business message exchange.
It was developed from the mid-nineties onward to be an easily deployable B2B
solution that can be adjusted to the changing needs of a company. Its creators
have been in the e-commerce business since it began in the 80’s, and as a conse-
quence the system supports old standards for message transport and encoding
as well as new ones and can interface to different ERP systems. It is extensible
and designed with the possibility of future change in mind.

2 Requirements for Modern B2B

Before we discuss the architecture of the EDIS B2B system, we would like to
point out the requirements that a modern B2B system has to satisfy. These
requirements have changed, since the new wave of B2B standards brings up new
maturity and compatibility issues. Standards for electronic B2B have become
a strategic factor, which means that decisions about it have to be considered
carefully.

First of all, it is not always possible for a company to choose their B2B
standard themselves. Many companies depend on trade relationships with bigger
business partners, and if such a business partner decides to change its e-commerce
system, might very well expect its smaller partners to adjust to it. This makes
flexibility of a system a basic requirement, especially in today’s world where
many changes are just about to occur. As we can see, for example, in [14], the
strategies with which companies adopt new B2B technologies can differ signifi-
cantly. The evolving nature of electronic B2B and the steady change that takes
place has been subject to many studies, e.g., the one described in [9]. It is im-
portant to note that we usually need not just a single standard for B2B message
exchange: there exist, for example, different standards for message encoding and
message transport, respectively, and those standards can be combined in many
different ways. To sum up, a flexible B2B system has to support different stan-
dards for different tasks, and it should be possible to combine them in different
ways.

Another aspect of flexibility concerns the workflow that a B2B system sup-
ports. This workflow, which might, for example, define what happens when a
system error occurs, may also be subject to steady change. Therefore, it must
not only be possible to configure the technological behaviour of the system,
but it must also be possible to change the way the system reacts to different
circumstances that may occur.

Different companies often have different ERP systems. Some companies even
have their own particular one. Whatever the ERP system is that a company
uses, a good message exchange system has to be able to interface to any of
them. Since the interface to the ERP system can be a very proprietary one,
it may be necessary to create a customized adapter component. A good B2B
system will support a developer in this task.

www.manaraa.com

58 B. Dowdeswell and C. Lutteroth

In contrast to B2C, B2B is usually not dealing with huge loads of transac-
tions. Consequently, performance is not as important as in B2C. Whereas in B2C
we usually do not expect a single business transactions to have a particularly
high value, but rather expect many transactions with relatively small value, the
value of a B2B transaction can be extremely high. A flawed B2B transaction can
cause immense costs. Therefore we have to make sure that erroneous messages
are singled out, either automatically or manually. In order to perform such error
checking, the system needs to have some knowledge about the business logic;
and since business logic varies from company to company, it must be possible
to configure it as easily as possible. For correct business messages manual trans-
lation does not make sense: it is a tiring task and that makes it particularly
error prone. However, if an erroneous message is detected, human intervention
is an absolute necessity. For resolving errors, human intelligence is irreplaceable,
and trying to resolve errors automatically would be too high a risk. Neverthe-
less, a good B2B system should support the workflow of error handling done by
humans.

A B2B system has to offer high reliability. If messages get lost or corrupted,
this can have disastrous consequences for the supply chain of a business. Thus,
such a system has to rely on mature technology, like, for example, a good data-
base management system. Only if a persistent log is kept, the system can be
brought back into a consistent state after failure. Since such a system naturally
involves many business partners, errors might not necessarily occur just in the
local system, but in any system involved. A B2B system has to work correctly
even if other’s systems fail, and must also handle and resolve errors created by
others. It has to be fail operational, i.e., remain in an operational state even
when an error occurs. Whatever happens, the system has to log every major
system event, like incoming and outgoing messages, message translation and
possible failures. Only like this a system can, for example, detect when duplicate
messages are received and prevent duplicate processing. A very important issue
related to reliability is availability. While it may be tolerable in B2C when a
service is temporarily unavailable, this is totally unacceptable for a business. In
B2C this may cost a couple of small successful trades, but in B2B this can be
existential.

Last but not least, a B2B system has to guarantee security. This has dif-
ferent aspects: first of all, mechanisms like digital certificates and signatures
have to make sure that all the sender of each message is authentified. Once
authentification is done, we can use it in order to prevent unauthorized mes-
sages from being processed, i.e., ensure access control. Usually we also do not
want others to get to know the content of the business messages, so we have to
apply encryption to make them unreadable to others. Finally, a business part-
ner might want a unforgeable receipt for the reception and/or processing of a
message, which establishes a property called non-repudiation, i.e., the business
partner at the other end cannot repudiate the reception and/or processing of the
message.

www.manaraa.com

A Message Exchange Architecture for Modern E-Commerce 59

3 The EDIS Architecture

Figure 1 shows an overview of the system’s architecture. As we can see, the
system consists of different modules, some of which form groups that take care of
a particular aspect of the system’s functionality. On the left side of the figure we
have different modules for handling the transport of in- and outgoing message
with different protocols. On the right of the figure we have different modules
for the translation of messages, which handle the data flow between message
queue and ERP system. The message queue is the central data structure of the
messaging system, with the transport protocol modules storing and retrieving
messages from it.

Many of the system’s modules are written in an interpreted scripting language
which is largely equivalent to MS Visual Basic. Some of the transport protocol
modules and all of the translation modules are implemented as scripts. This has
the advantage that these modules are very easy to program, to deploy and to
debug. The scripting language offers a high level of abstraction through a com-
prehensive framework of library functions. It eliminates the need for compilation
to a low-level representation, which makes it platform independent. Scripts are
controlled by the interpreter and sufficiently isolated from the rest of the system;
this makes it possible to ensure safety of execution and control a script’s capa-
bilities, i.e., the functions of the system it is allowed to use, making execution
also secure. The clean abstract interface of the interpreter and its inherent ca-
pacity to control the execution flow of a script make debugging easier. Although
interpretation is naturally slower than the execution of compiled code this is, as
we have discussed in Sect. 2, not a problematic issue.

Its scripting capabilities make the system highly customisable, since scripts
allow the developer to freely develop translation and communications functions

Fig. 1. Overview of the EDIS system

www.manaraa.com

60 B. Dowdeswell and C. Lutteroth

specific to their needs. Note, however, that this flexibility does not infringe the
system’s integrity: the system has a mature, “closed” core and library that en-
sures the scripts operate in an consistent and safe environment. While end-users
who are developers have full access to the script source, they cannot modify the
core modules such as, e.g., the scheduler, the AS2 protocol implementation or
the EDIFACT library parsing routines.

All scripts are, directly or indirectly, activated by the scheduler of the system.
This module allows it to start scripts at regular time intervals. The analyser
module collects elementary data about a message and then delegates the its
processing to an appropriate translation script. In the following sections we will
describe all of these parts in detail.

3.1 The Message Queue

The message queue is the central data structure in the system. Whatever mes-
sage passes through the system will be archived in the message queue. It is
implemented on a relational database, which controls the access to it by all the
other system parts and makes sure that the data remains in a consistent state.
Since the message queue is such an important part of the system, we want to
cover it in more detail and explain how its relational schema looks like.

Before a message is sent it is usually put into an electronic envelope. Such
envelopes can hold multiple messages that are sent to a business partner in a
single delivery. The message queue keeps track of envelopes as well as of newly
created messages that are not enveloped yet. For each envelope the system has
to keep track of the different messages embedded in it. This is achieved with two
tables, Queue and QueueXref, which are illustrated at the top of Fig. 2. Table
Queue contains all the envelopes and unenveloped messages currently stored in
the system, together with fields that explicitly describe some of their fundamen-
tal properties. Table QueueXref keeps track of and contains information about
the messages that are stored in the envelopes of table Queue.

Let us first consider the records of table Queue: field MsgData holds the raw
data of an individual message or an envelope as it was received or created in a
BLOB. Field EDI ref is a running integer number and the primary key of the
table. Fields SenderID, PartnerID and ServideID are foreign keys to the tables
Partners and Services. If the record contains a message and not an envelope,
SenderID identifies the message’s sender, otherwise it is left blank. PartnerID
identifies the business partner an individual message or envelope is addressed
to. ServiceID references the remote service a message or envelope should be sent
to; more information about how to transfer data to a particular remote service
can be found in table Services. Field DocuType identifies the message format of
a message or envelope, e.g., EDIFACT or ANSI X.12. Naturally, all messages in
an envelope share the same format. DocuDir contains the direction of envelopes,
i.e., if it is inbound and has been received or outbound and will be or has been
sent. Field DocuStatus indicates if an entry needs processing or has already been
processed, and if the processing resulted in any error.

www.manaraa.com

A Message Exchange Architecture for Modern E-Commerce 61

Fig. 2. General structure of the EDIS data model

Table QueueXref contains data about all messages that are stored in one
of Queue’s envelopes. It also contains field EDI ref, which refers to an en-
velope in Queue, and a field MsgNbr, which is the running number of the
respective message within that envelope. Together, EDI ref and MsgNbr form
the primary key of the table. MsgRef contains a message reference number
that is used to uniquely identify messages of a particular business partner,
which is important for detecting duplicates. It helps to make message recep-
tion idempotent, i.e., makes sure that messages which are received twice are
only processed once. MsgStdsName and MsgVer contain information about the
standard and the version of the standard the message adheres to. PartnerID is
a foreign key to table Partners and identifies the message’s creator. Since each
message in QueueXref is embedded in the BLOB field MsgData of an entry of
Queue, we also keep track of the starting position BytePosn of each message
within the BLOB. Field MsgStatus indicates whether this message has not been
or has already been decoded, and if any errors occurred during the decoding
process.

www.manaraa.com

62 B. Dowdeswell and C. Lutteroth

3.2 The Scheduler

Many of the scripts of the system are executed in regular time intervals. The
part of the system that manages such time events is the scheduler. The scheduler
organizes time events in so-called process lines that are specified in the following
manner: it is possible to set the days of the week on which an event should occur,
the time of day the event should first be sent, the time of day the event can be
sent at last, and the frequency in which the event should be rescheduled after
having been sent. These parameters allow it to specify the time pattern in which
e-commerce usually takes place. All data about scheduling and current events is
available in the system’s relational database and can be read by other programs,
e.g., for monitoring purposes.

3.3 Transport Protocol Modules

Transport protocol modules are part of the system that take care of a specific
type of message transportation. As we have mentioned earlier there are differ-
ent standards and non-standards for the different functions of a B2B message
exchange system, and a good system has to be able to support all of them if
required. An important business partner might just adopt a new standard, and
the system has to adjust to this. This is why the transport subsystem of EDIS
has a modular structure that decouples message transportation from other parts.

A module can support sending of messages, reception, or both. It is activated
by a system event, which is usually either a timer signal or the arrival of a mes-
sage. The sending of messages is always triggered by a timer signal, whereas the
reception can be either triggered by a timer signal or message arrival. Modules
that are triggered by timer signals are usually implemented as scripts, which are
interpreted by the B2B system. Modules that react directly to message arrivals
are usually implemented as server extensions to, for example, the MS Internet
Information Server (IIS). This diversity is necessary in order to deal with the
different ways a message can be sent and received, of which we will describe a few.

One way to transport messages is to simply use the email infrastructure.
Email communication can be secured, for example, by combining it with trans-
port layer security (TLS), and authentification can be established by using digital
signing as described in the S/MIME standard. The transport protocol module
is triggered by a timer signal in regular intervals, and each time the module is
started, it connects to the respective mail server, retrieves the new messages, re-
moves the mail specific data from them and stores them into the message queue.
The messages are marked as unprocessed inbound messages. Besides for retriev-
ing messages form a mail server, the module also checks the message queue for
outbound messages that are to be sent to business partners that use email as
transport protocol. Once these messages have been delivered to the respective
mail server, they are marked as sent. One of the advantages of this architecture is
that existing email infrastructure can be used. Rather than having to implement
its own mail server, the system can interface to existing ones and thereby make
the actual message transport independent of other tasks particular to B2B.

www.manaraa.com

A Message Exchange Architecture for Modern E-Commerce 63

A transport module similar to the one that uses email transfers the messages
to and from a business partner’s file system using the file transfer protocol (FTP).
This protocol can be secured, for example, by tunnelling it over the secure shell
protocol. The module is executed in regular time intervals, looks for new files
on a business partner’s file system and for new messages in the message queue,
performs the appropriate file transfer operations and updates the message queue.
Although FTP is a standardized protocol, the exact transport process via FTP
usually varies between business partners: business partners have their own rules
for the file names and file locations particular message types have to be stored
to. Consequently, such kind of modules have to be adjustable. This is achieved
through the relatively high abstraction level of the scripting language in which
these modules are written. Again, the system profits from the fact that it can
use any FTP server for message transport.

The module for handling inbound AS2 communication [3] is an example for
a module that is executed on arrival of a message. AS2, short for application
statement 2, is a business message transport standard proposed by the IETF.
It encapsulates message data in a MIME or S/MIME envelope and sends it via
HTTP. This is why the AS2 reception module is implemented as a MS IIS HTTP
handler. Whenever an AS2 message arrives, the handler is called and stores the
received data into the message queue. Since the message queue is implemented
on a transactional database management system, it does not matter how many
such handlers are working concurrently. The database management system takes
care of all the concurrency issues.

Modules handling outbound communication can access the system’s rela-
tional database in order to get the parameters that are need to send a message.
Table Services, which is illustrated in the top left corner of the data model in
Fig. 2, contains an entry for each remote service a message can be send to. Field
ServiceID is the table’s primary key and is used to associate the service with any
message in table Queue that should be send to it. ServiceDesc describes each of
the available services. Field AccessMethod and other fields, which we will not
mention further, provide the necessary technical details for sending messages to
the respective service provider.

3.4 Message Analysis

In regular time intervals the analysis module is run. It searches the message queue
for incoming envelopes that have not been processed yet. The analysis module
parses each message in such an envelope and determines what format the messages
are stored in and if the messages are well-formed. If a message is well-formed, some
of its basic properties are extracted, like its sender, its receiver, the message type,
e.g, if it is an invoice or purchase order, and its unique reference number. These
data are used in order to create a record in table QueueXref that describes the
respective message of the envelope. In order to decode a message and take appro-
priate action, we have to make use of the data about our business partners and the
messages they send that is stored in the system’s data base. The tables involved
here are illustrated in the bottom part of Fig. 2.

www.manaraa.com

64 B. Dowdeswell and C. Lutteroth

Once a message has been analysed we need to start a script that handles
its further processing. Each kind of message is handled by a particular script,
which, in the case of incoming messages, either decodes the message or redirects
it. Decoding scripts and redirection scripts are described in Sects. 3.5 and 3.8,
respectively. For each message kind there is a record in table UserMsgDefn, which
contains a reference to the script that should be used. In field TranslationType
this record contains the type of the script, e.g., encoding or decoding, and in
fields MsgStdsRef and MsgVer the type of the processed message is described.

For choosing the right script for an incoming message, we use its type and
its sender, both of which have been extracted already. Table Partners contains
an entry for each business partner messages are sent to or received from. Each
business partner supports a well-defined set of message kinds that they can send
or receive. The data model allows us to map a type and a sender, which has an
entry in partners, unambiguously to a script. One way to define this mapping
is to modify table PartnerMessages, which can arbitrarily associate entries in
table Partners with entries in table UserMsgDefn. Field PartnerID is a foreign
key to table partners; field UserMsgName is a foreign key to table UserMsgDefn.
The fields PartnerID and MsgLineNbr form the primary key of the table, with
MsgLineNbr being a running number for all the kinds of messages a respective
business partner supports.

It would be possible to link all business partners with the message kinds
they support using table PartnerMessages. However, usually there are groups
of business partners which communicate amongst themselves using a common
standard and therefore use the same set of message kinds. In order to simplify
the relation between partners and message kinds and make them easier to main-
tain, the data model supports this concept of groups of business partners by
providing tables PartnerGroups and PartnerGroupMsgs. Field PartnerGroupID
of table Partners is a foreign key to table PartnerGroups, which contains a de-
scription of every group of business partners. It allows to associate a business
partner with a group and join groups with entries in table PartnerGroupMsgs.
Table PartnerGroupMsgs follows the same pattern as table PartnerMessages,
only that UserMsgDefn records are associated with records in PartnerGroups.
The advantage of business partner groups is that changes to the message kinds
of a group affects all group members, thus preserving compatibility of their
communication.

3.5 Decoding Scripts

As we have described in Sect. 3.4, decoding scripts are chosen and executed by
the analyser when inbound messages are processed. A decoding script parses a
message, extracts all important information and stores this information into the
database of an ERP system. In order to perform the translation of messages
into ERP records, decoding scripts have to be aware of the message’s syntax
and semantics as well as the structure of the ERP system’s data base. Hence,
writing such scripts is not a trivial task, and correctness of such scripts is very
important.

www.manaraa.com

A Message Exchange Architecture for Modern E-Commerce 65

A scipt’s capabilities, i.e., the operations it is allowed to perform, should
be minimal. This way we can avoid many errors and detect some unwanted
behaviour. One way to realize this is to configure the interpreter accordingly: it
can control the access of the script to other modules while it is running. Another
way to restrict access and thereby increase safety is to use the access control
mechanism of the ERP system’s database: a script should only have write access
to those tables that it really needs to modify.

Last but not least, it is very important to handle errors in scripts appropri-
ately. If an error occurs, the error has to be logged and possible modifications
that have already been made by the scripts have to be undone. A script has to
be atomic, i.e., either complete successfully or have no effect at all except on
the system’s logs. The general structure imposed on the scripts satisfies all these
requirements. If a script produces a significant amount of errors, something in
the system is most probably wrong. It may be that the script is erroneous, but it
may also be that a business partner changed their messages without the system
being adjusted to the change. Whatever the reason, such a script will be singled
out and put into quarantine, and the errors are automatically reported to the
person responsible for the respective kind of message.

3.6 Search Scripts

Search scripts are run by the scheduler in regular time intervals. They search
parts of an ERP system’s database that contain information which has to be
sent to other business partners, like, for example, invoices or purchase orders.
For that they run a database query and keep the query results in an ephemeral
todo-list, which contains some basic information about every ERP record that is
to be sent. When the todo-list is complete, the search script uses the data in the
todo-list, like intended message recipient and message type, in order to select a
script that can encode the the data into a message. This is analogous to the task
of the analyser of selecting a decoding script, which was described in Sect. 3.4,
and makes use of the same database tables. Encoding scripts are described in
Sect. 3.7. A search script finishes when all todo-list entries have been processed
by appropriate encoding scripts.

3.7 Encoding Scripts

An encoding script is activated when a search script finds new data in an ERP
database that needs to be sent out of the system. The encoding script is given the
location of the ERP data it has to encode, extracts the required information from
the ERP database and assembles a new message that is written into the queue.
As soon as an appropriate transport protocol module is run by the scheduler,
the newly created messages are sent.

In order to keep track of the ERP records which have already been encoded
and avoid multiple encoding of the same record, encoding scripts use additional
database tables. These tables can either be part of the messaging system’s or
the ERP system’s database. The advantage of keeping them in the messaging
system is that ERP and messaging system are decoupled more and the risk of

www.manaraa.com

66 B. Dowdeswell and C. Lutteroth

interference between the systems is reduced. The advantage of keeping them in
the ERP database is that the search query of a search script, which must only
return unsent records, can be executed more efficiently.

Encoding scripts are subject to the same safety requirements as decoding
scripts, which were described in Sect. 3.5. The capabilities such a script has
have to be adjusted carefully, e.g., the script should only be able to access those
parts of the ERP system that are needed. Like decoding scripts, encoding scripts
have to behave atomic and must handle and report errors carefully.

3.8 Redirection Scripts

Like decoding scripts, redirection scripts are started by the analyser after a new
inbound message has been analysed. However, instead of decoding the message
and storing it into an ERP system, the message is decoded and afterwards en-
coded as a new outbound message. The encoding creates a new entry in the
message queue that will be found and sent by one of the transport protocol
modules. This makes it possible for the system to act as a hub in a network of
business partners. It can mediate and translate the message exchange between
business partners who use different messaging standards, thus allowing them to
communicate without changing their system.

3.9 Maintenance Scripts

Another category of scripts is that of maintenance scripts. These scripts are usu-
ally called by the scheduler in regular time intervals and automatically perform
maintenance tasks which are important for the system. A maintenance script
might, for example, backup and archive all system data or produce a report on
the system’s recent activity.

4 Tool Support

Because the creation of translation scripts like encoding and decoding scripts is a
skilled task that consumes considerable time when done manually, the messaging
system contains an integrated development environment (IDE), EDIS map, that
can reduce the development time of such scripts drastically. By automating large
parts of the actual decoding and encoding of messages, EDIS map avoids many
potential programming errors and makes the development of translation scripts
easier and safer. The IDE supports old messaging standards like EDIFACT and
ANSI X.12 as well as newer XML-based message standards.

EDIS map facilitates the creation of translation scripts in several ways. It
offers a set of templates for standard translation tasks that can be easily modified
and adapted according to the business rules of a particular business partner. New
message translation scripts can be created by importing sample messages or
message schemas. The IDE makes meta information of several target database
systems like, for example, MS SQL Server and Borland Interbase, accessible,
so that scripts can easier be programmed to use these database systems. The

www.manaraa.com

A Message Exchange Architecture for Modern E-Commerce 67

tool integrates documentation of messages and can export documentation about
message mappings in human readable form. Furthermore, it can automatically
generate documentation suitable for regression testing of scripts.

Rather than dealing with a single monolithic script that does all the work in-
volved in processing a message, we associate code snippets to message segments
that merely process the data in the respective message segment. Individual seg-
ments of a message can be examined, specified and documented. This approach
results in a natural decomposition of the translation process.

EDIS map also contains the usual features of advanced IDEs. It supports au-
tomatic formatting and syntax highlighting of code and message data, a context-
sensitive help and automatic code completion. Syntax checking is performed and
syntax errors are reported immediately; also runtime and compile-time errors are
reported within the IDE. The integrated debugger allows to trace the execution
of scripts in single steps.

5 Related Work

There exist theoretical models for the description of messaging systems, which
can be applied to the B2B context. One such model is described in [4]. It is
possible to describe messaging as done by the EDIS system with the data type
interchange models delineated in this work. In the terminology of [5], EDIS
provides the technological means for data exchange in interorganizational rela-
tionships between business partners. It is mainly used for relationships governed
by a market, although it is also possible to use it for relationships governed by
a hierarchy or a hybrid of both. EDIS is not limited to dyadic or “hub and
spoke” type relationships, but can be applied to organization networks as well.
It provides all the functions of a B2B engine as described in [1] as well as some
additional B2B integration functions, like integration of ERP systems.

There are various B2B systems on the market that offer capabilities similar
to those of EDIS. One of them is MS BizTalk [11]. BizTalk offers B2B functional-
ity similar to EDIS, although it intends to perform not only B2B messaging but
also enterprise application integration (EAI) and, most of all, business process
management (BPM). It has been described, for example, how BizTalk can be
used in order to manage B2b contracts electronically [7]. Whereas EDIS focusses
on enabling business partners to communicate, BizTalk also tries to define and
execute high-level programs, so-called “orchestrations”, which are supposed to
express business processes. These programs can be edited in a visual form and
are equivalent in expressiveness to the programming language BPEL [12], which
claims to achieve a higher level of abstraction that is closer to real business
processes by focusing on “programming in the large”. Regarding the original
intention of business process modelling as described, e.g., in [13], it is, however,
arguable whether orchestrations can really reach to that level, or if they rather
just describe the business logic. Such an approach is not inherently more appro-
priate than the scripting approach chosen in EDIS. The overall architecture of
BizTalk is similar to EDIS: the system contains modules for handling different

www.manaraa.com

68 B. Dowdeswell and C. Lutteroth

transport protocols, which are called “adapters”, and messages are stored in
a central relational database, which is called “message box”. A central compo-
nent, the “orchestration engine”, executes and feeds messages into orchestrations
according to the message’s properties and perform further processing.

A main difference of BizTalk to EDIS is that all messages in the message box
are stored in some format based on XML. This can be explained by the point of
view that XML inherently provides added value for B2B, as it is also expressed
in different academic publications, e.g., [6] and [16], and by Microsoft’s current
technological strategy. Consequently, incoming and outgoing messages need to
be translated to and from XML in so-called “pipelines”. For different message
formats we need different sets of receiving and sending pipelines. While the us-
age of XML as a common intermediate format helps to standardise and reduce
modules preforming translation tasks and makes it possible to handle message
content in a common way, it also introduces the need to translate between dif-
ferent XML formats since XML is not a well-defined message format in itself.
Therefore, Biztalk comes with a CASE tool called BizTalk Mapper for creating
XSL transformations [18] between different XML schemas. This is slightly sim-
ilar to EDIS map, but in contrast to BizTalk Mapper, EDIS map supports the
translation between essentially different data formats, not just between different
flavours of XML, which is a more difficult task.

Another important difference to EDIS is that BizTalk has a very large foot-
print and depends on various other Microsoft products. Integration with other
products may on the one hand provide the user with more functionality and may
enrich the way a user can interact with a system, but on the other hand, depen-
dencies between products force customers to spend money on all the required
products and binds them to the respective company.

BizTalk, like many other products, make a big point of claiming that they
deliver service oriented architecture (SOA) [10]. In general, SOA describes a soft-
ware architecture for enterprise systems in which components are distributed in
a network and can use each other by utilizing a common remote function invo-
cation mechanism. Each component, which is also called a “service”, performs
a well-defined business task and can be implemented with arbitrary technology
as long as it provides the same network interface as the others. When most
companies speak about SOA, they refer to the very particular remoting tech-
nology of web services, the heart of which is the simple object access protocol
(SOAP) [17]. In the context of B2B, web services are just one possible way of
many for business partners to communicate; consequently, web services is just
one of the transport protocols a B2B system like BizTalk or EDIS can provide in
order to fit into a SOA. The software architecture of the BizTalk or EDIS systems
themselves is usually not SOA, but rather a structured, component-oriented and
non-distributed one. In the case of EDIS, the system consists of modules that
mostly interoperate asynchronously using the message queue, which is accessed
by SQL. Other commercial systems which follow the trend of SOA and have B2B
capabilities similar to EDIS are, for example, IBM WebSphere MQ and Cordys.

www.manaraa.com

A Message Exchange Architecture for Modern E-Commerce 69

There are many studies describing the complexity of the implementation of
B2B systems in various companies; see for example [2]. Taking into account
past experiences with B2B, it is questionable whether a new B2B software can
really revolutionize the way electronic business is done. One should mark that
that the ways of electronic business are usually subject to evolutionary – not
revolutionary – change.

6 Conclusion

We described the EDIS B2B messaging system, its overall architecture and the
design of its important components like, for example, the scheduler, the message
analyser and the message queue. We also described EDIS map, which is a CASE
tool for creating translation scripts for EDIS. Besides pointing out the general
requirements of a B2B system, we also compared EDIS to other popular systems
with B2B messaging capabilities. While many other products claim to have a
significant impact on a business by offering business process engines and pro-
moting service oriented architecture, EDIS is not intended to promote or change
any architectural principles. It rather makes a point of not being prescriptive
and enable different companies to communicate without interfering with their
business processes.

References

1. Christoph Bussler. The role of B2B engines in B2B integration architectures.
SIGMOD Rec., 31(1):67–72, 2002.

2. Caroline Chan and Paula M.C. Swatman. Management and business issues for
B2B eCommerce implementation. In Proceedings of the 35th Annual Hawaii In-
ternational Conference on System Sciences. IEEE Press, January 2002.

3. D. Moberg and R. Drummond. RFC4130: MIME-Based Secure Peer-to-Peer Busi-
ness Data Interchange Using HTTP, Applicability Statement 2 (AS2). RFC, July
2005.

4. Dirk Draheim and Gerald Weber. Form-Oriented Analysis - A New Methodology
to Model Form-Based Applications. Springer, October 2004.

5. Wafa Elgarah, Natalia Falaleeva, Carol C. Saunders, Virginia Ilie, J. T. Shim, and
James. F. Courtney. Data exchange in interorganizational relationships: review
through multiple conceptual lenses. SIGMIS Database, 36(1):8–29, 2005.

6. Wilhelm Hasselbring and Hans Weigand. Languages for Electronic Business Com-
munication: State of the Art. Industrial Management & Data Systems, 101(5):
217–226, 2001.

7. Charles Herring and Zoran Milosevic. Implementing B2B Contracts Using BizTalk.
In Proceedings of the 34th Annual Hawaii International Conference on System
Sciences. IEEE Press, January 2001.

8. Paul Kimberley. Electronic Data Interchange. McGraw Hill, 1991.
9. Chang E. Koh and Kyungdoo Nam. Business use of the Internet: A longitudinal

study from a value chain perspective. Industrial Management & Data Systems,
105(1):82–95, January 2005.

10. Mircosoft Inc. BizTalk Server 2004 Architecture. Whitepaper, December 2003.

www.manaraa.com

70 B. Dowdeswell and C. Lutteroth

11. Mircosoft Inc. Understanding BizTalk Server 2004. Technical Article, February
2004.

12. Organization for the Advancement of Structured Information Standards. Web
Services Business Process Execution Language Version 2.0. Working Draft, May
2005.

13. August-Wilhelm Scheer. Aris: Business Process Modeling. Springer, 2000.
14. Arie Segev, Jaana Porra, and Malu Roldan. Internet-based EDI strategy. Decision

Support Systems, 21(3):157–170, 1997.
15. Aaron E Walsh. UDDI, SOAP, and WSDL: The Web Services Specification Ref-

erence Book. Pearson Education, April 2002.
16. Tim Weitzel, Peter Buxmann, and Falk von Westarp. A Communication Archi-

tecture for the Digital Economy - 21st Century EDI. In Proceedings of the 33th
Annual Hawaii International Conference on System Sciences. IEEE Press, January
2000.

17. World Wide Web Consortium. SOAP Version 1.2. Recommendation, June 2003.
18. World Wide Web Consortium. XSL Transformations (XSLT) Version 2.0. Working

Draft, April 2005.

www.manaraa.com
D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 71 – 83, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Architecture for Distributed ERP Systems

Lars Frank

Department of Informatics, Copenhagen Business School, Howitzvej 60,
DK-2000 Frederiksberg, Denmark

Phone: +45 38 15 2400; Fax: +45 38152401
frank@CBS.DK

Abstract. In a distributed ERP (Enterprise Resource Planning) system, the dif-
ferent local ERP systems are integrated in such a way that each local system can
use the resources/stocks managed by the other local ERP systems. Businesses
with branch offices may derive great benefits from such systems. In theory, such
a system can be built by using a distributed DBMS (Data Base Management Sys-
tem). However, distributed DBMSs are not used in practice as e.g. performance
and local autonomy are low. In distributed databases with relaxed ACID proper-
ties (Atomicity, Consistency, Isolation, and Durability), it is possible to optimize
performance, local autonomy, and availability by using short duration locking. In
such systems, data is not locked across locations, i.e. data is not locked across a
dialog with a user, and replicated data must be updated asynchronously. In this
paper, we will describe how it is possible to design a distributed ERP system by
using databases with relaxed ACID properties. The techniques described are
general in the sense that most package software run on separate computers may
be integrated by using the same methods. The author has cooperated with one of
the major ERP software companies in analyzing how the company can design
such a distributed version of their ERP system.

1 Introduction

The countermeasure transaction model [1] is the extended transaction model used in
this paper to implement relaxed ACID properties. In this model, countermeasures [1]
are used against the isolation anomalies that may occur when transactions are exe-
cuted without or with reduced isolation against concurrent transactions. The relaxed
ACID properties are used to improve performance and availability. In this paper,
different replication designs are used to enhance local autonomy and further improve
performance and availability. The major disadvantages of data replication are the
additional costs of updating replicated data and the problems related to managing the
consistency of the replicated data. However, when replicated data is updated asyn-
chronously, it is normally possible to use the same countermeasures against isolation
anomalies and consistency problems in the replicated data.

To implement countermeasures against lack of consistency and isolation may be
expensive. Therefore, the techniques described are most attractive to software compa-
nies developing package software such as ERP systems, as the development costs
may be shared with many buyers.

www.manaraa.com

72 L. Frank

The paper is organized as follows: Sect. 2 will describe how relaxed ACID proper-
ties may be implemented by using an extended transaction model. Sect. 3 will
describe and evaluate the replication designs used in this paper. Sect. 4 will integrate
the extended transaction model described in Sect. 2 with the replication designs de-
scribed in Sect. 3 to design a distributed ERP system optimized for high performance,
high availability, and local autonomy. Related work will be discussed in Sect. 5. Con-
cluding remarks and future research will be presented in Sect 6.

2 The Transaction Model

In this section, we will describe the countermeasure transaction model [1] where
global transactions [14] may access data located in more than one local database.
This is important in distributed ERP systems where the stocks are managed by local
ERP systems running in different locations.

In the countermeasure transaction model, a global transaction has a root transac-
tion (client transaction) and several single site subtransactions (server transactions)
that may be nested, i.e. a subtransaction may be a parent transaction for other sub-
transactions. Data is accessed through subtransactions that either are an execution of a
stored procedure, which automatically returns control to the parent transaction, or an
execution of a stored program that does not return control to the parent transaction.
Subtransactions are invoked by either RPC or UPs as described in the following:

Remote Procedure Call (RPC)
A RPC functions as a remote procedure call or submission of a SQL query. RPCs
have the following properties, which are important from a performance and an
atomicity point of view:

− If a parent transaction executes several RPCs, the corresponding stored procedures
are executed one at a time.

− A stored procedure or SQL submission has only local ACID properties.
− The stored procedure or SQL submission automatically returns control to the

parent transaction.

Update Propagation (UP)
UP is used for updating remote data with distributed atomicity and durability proper-
ties synchronized with the updates of the parent transaction. UPs may be implemented
in the following way:

The parent transaction makes the UP “call” by storing a so-called transaction
record in persistent storage at the parent location. The parent transaction id, the id of
the subtransaction and the parameters of the subtransaction are stored in the transac-
tion record. If the parent transaction fails, the transaction record will be rolled back
and the subtransaction is not executed. If the parent transaction is committed, the
transaction record is secured in persistent storage and we say that the UP has been
initiated. After the initiation of the UP, the transaction record will be sent by the UP
tool to the location of the corresponding subtransaction. The data transfer may be

www.manaraa.com

 Architecture for Distributed ERP Systems 73

implemented by using push and/or pull technology. In contrast to RPCs, UPs have the
following properties:

− If a parent transaction initiates several UPs, the corresponding, stored programs
may be executed in parallel.

− A stored program initiated from a UP has atomicity synchronized with the parent
transaction, i.e. either both or none of the transactions will be executed.

− The stored program does not automatically return control to the parent transaction.

In the following subsections, we will present a general outline of how relaxed ACID
properties are implemented in the countermeasure transaction model.

2.1 The Atomicity Property

The atomicity property is normally implemented by a DBMS that ensures that either
all or none of its updates of a transaction will be executed. In the countermeasure
transaction model, the global transaction is partitioned into several local subtransac-
tions with local ACID properties. Therefore, the global transaction does not have any
of the global ACID properties. However, the global atomicity property can be imple-
mented if the global transaction is divided into the following types of subtransactions:

1. The pivot subtransaction that manages the commitment of the global transaction.
The global transaction is committed when the pivot subtransaction is committed
locally. If the pivot subtransaction aborts, all the updates of the other subtransac-
tions must be compensated.

2. The compensatable subtransactions that all may be compensated. Compensatable
subtransactions must always be executed before the pivot subtransaction is exe-
cuted to make it possible to compensate them if the pivot subtransaction cannot
be committed. A compensatable subtransaction can be compensated by executing
a compensating subtransaction.

3. The retriable subtransactions that are designed in such a way that the execution is
guaranteed to commit locally (sooner or later) if the pivot subtransaction has been
committed. A UP tool is used to resubmit the request for execution automatically
until the subtransaction has been committed locally, i.e. the UP tool is used to
force execution of the retriable subtransaction.

The global atomicity property is implemented by executing all the compensatable
subtransactions and then the pivot subtransactions. If the pivot subtransaction fails, it
is possible to compensate all the compensatable subtransactions, and therefore the
atomicity property is secured. If the pivot subtransaction commits, all the retriable
subtransactions will be initiated, and therefore the retriable subtransactions will be
(r)executed automatically until they have been committed.

RPCs can be used to call/start the compensatable subtransactions and/or a pivot sub-
transaction as the execution of these subtransactions is not mandatory. It is always
possible to initiate compensation if only the pivot is executed as the last subtransaction.

After the pivot subtransactions have committed, all the remaining updates are man-
datory, and therefore the retriable subtransactions should always be initiated by UPs.

www.manaraa.com

74 L. Frank

2.2 The Consistency Property

A database is consistent if its data complies with the consistency rules of the database.
If the database is consistent both when a transaction starts and when it has been com-
pleted and committed, the execution has the consistency property.

Databases with relaxed ACID properties are almost always inconsistent, and there-
fore the consistency property cannot be fulfilled. However, in databases with relaxed
ACID properties, asymptotic consistency is important:

If the database is asymptotically consistent when a transaction starts and also when
it has been committed, the execution has the relaxed consistency property.

Without this property, it is impossible to implement consistent OLAP data ware-
houses on top of the inconsistent distributed OLTP database.

2.3 The Isolation Property

The isolation property ensures that the updates of a transaction are not seen by other
transactions before the updates have been committed. Normally, the isolation property
is implemented by the concurrency control [14] of the DBMS. In the countermeasure
transaction model, the global transaction is partitioned into several local subtransac-
tions with local ACID properties. Therefore, the global transaction does not have the
global isolation property. If transactions are executed without isolation, the so-called
isolation anomalies may occur. In the countermeasure transaction model, the conse-
quences of these anomalies are prevented or reduced by using countermeasures. If
there is no isolation, the following isolation anomalies may occur [15] and [16].

− The lost update anomaly is by definition a situation where a first transaction reads a
record for update without using locks. Subsequently, the record is updated by an-
other transaction. Later, the update is overwritten by the first transaction. The lost
update anomaly may occur if a record is read and updated in different subtransac-
tions as a second transaction may update the record between the read and the
update of the first transaction. This may happen in the countermeasure transaction
model, as records are not locked across a dialog with the user.

− The dirty read anomaly is by definition a situation where a first transaction updates
a record without committing the update. Subsequently, a second transaction reads
the record. Later, the first update is aborted (or committed), i.e. the second transac-
tion may have read a non-existing version of the record. The dirty read anomaly
may occur when a compensatable subtransaction updates a record and later aborts
the update by using a compensating subtransaction. If another transaction reads the
record before the update has been compensated, the data read will be “dirty”.

− The non-repeatable read anomaly or fuzzy read is by definition a situation where a
first transaction reads a record without using locks. Later, the record is updated and
committed by a second transaction before the first transaction has been committed.
Therefore, if the first transaction rereads the record, it may find that the data has
changed. In extended transaction models, this may occur if a record is read and
updated in different subtransactions as a second transaction may update the record
between the read and the reread for the update. In the countermeasure transaction
model, this may happen as records are not locked across a dialog with the user.

− The phantom anomaly is not relevant to this application area.

www.manaraa.com

 Architecture for Distributed ERP Systems 75

In the following, we will describe the countermeasures illustrated later in the example
in section 4. We will first describe countermeasures against the lost update anomaly
as these are most important.

The reread countermeasure can prevent the lost update anomaly that may occur if
a global transaction reads a record in one subtransaction and later rereads the record
for update in another transaction. If a second transaction has changed the record
between the two reads, the transaction aborts itself after the second read to avoid
overwriting the update of the second transaction. Often, it is not acceptable to lock
records across a dialog with a user, and in this situation the reread countermeasure
may be used to protect against the lost update anomaly. The reread countermeasure
cannot be used in retriable subtransactions as these cannot be rejected.

The commutative updates countermeasure can prevent lost updates merely by us-
ing commutative operations like adding and subtracting an amount from an account.
Subtransactions that only have commutative updates may be designed as commutable
with other subtransactions that also only have commutative updates. The commutative
updates countermeasure can prevent lost updates from retriable subtransactions. How-
ever, the commutative updates countermeasure can also prevent the lost updates that
may occur if a second transaction updates a record between the updates of a compen-
satable subtransaction and its corresponding compensating subtransaction.

The pessimistic view countermeasure can reduce the consequences of a dirty read
or a non-repeatable read by presenting the users with such a pessimistic view of the
record that the users cannot misuse the information. The pessimistic view counter-
measure may be implemented in the following way:

− Updates that reduce the users’ options should be executed in the pivot or in the
compensatable subtransactions. If these types of updates are aborted or compen-
sated, it is impossible to misuse the reduced options.

− Updates that increase the users’ options should be executed in the pivot or in the
retriable subtransactions. As retriable subtransactions are executed after the global
commit, it is impossible to misuse the increased options.

2.4 The Durability Property

Transactions have the durability property if the updates are stored in stable storage
and secured by a log recovery system. The global durability property will automati-
cally be implemented if the transactions have global atomicity and the local DBMS
systems have local durability [16].

3 Description of the Most Important Replication Methods

In Table 1, the most important types of replication methods are evaluated together
with the no-replication design as described by Frank [12]. Some of the properties are
evaluated as Best, Average, Worst, Below average, etc., which allows us to compare
the designs relatively. It has not been possible to select one of the replication designs
as the best because the designs’ properties vary according to the different evaluation
criteria. Anyway, the table makes it possible to select the most inexpensive design

www.manaraa.com

76 L. Frank

Table 1. Evaluation overview of replication designs

that fulfills the needs of a specific application. In the following, we will give a short
description of the evaluation criteria used in table 1. In Frank [12], you will find a
more detailed description of the evaluation.
 The read performance/capacity of a table design is evaluated to be the “best” if
remote readings always can be substituted by local readings. The read perform-
ance/capacity is evaluated as worse, the more remote reads the replication design
needs.

The write performance/capacity of a table design is evaluated to be the “best” if a
global table update always can be committed locally without communication with
other locations. The write performance/capacity is evaluated as worse, the more re-
mote accesses the replication design needs before a write/update can be committed.

After local failure, the local database and its log files are not physically destroyed,
and therefore it is always possible to repair the site. The ease with which failure re-
covery can be achieved is evaluated as “best” if the system automatically can make
recovery without aborting all non-committed transactions in case of site failure. The
ease with which failure recovery can be achieved is evaluated as worse, the more
recovery work it takes to abort or commit non-committed transactions in case of site
failure.

A database disaster is as a situation where a local database and its log files are de-
stroyed. The ease with which disaster recovery can be achieved is evaluated as “best”
if it is possible to repair the database automatically. The ease with which disaster

www.manaraa.com

 Architecture for Distributed ERP Systems 77

recovery can be achieved is evaluated as worse, the more recovery work it takes to
abort or commit non-committed transactions in case of site disaster. Full recovery
after a disaster may be impossible if only an old remote database copy can be used for
recovery.

The probability of lost data is mathematically defined as a value between 0 and 1,
and the probability can often be calculated as a function of the probability, say p, of a
local disaster and the number n of sites that may fail. The probability of lost data is
better the closer the value is to 0.

It is assumed that logging of the update transactions in the locations of the clients
is necessary for some replication designs to avoid losing transactions in case of disas-
ter. If this property is recommended, it is assumed that it is implemented where the
evaluation criteria ease with which disaster recovery can be done and availability are
evaluated.

The availability of a database is defined as the probability of having access to the
database. The availability is a function of the probability, say q, of local site failure,
which depends on the probability of disasters, failures and the time it takes to repair
the situations.

The ACID properties have been defined earlier in this paper, and they are evaluated
to be “best” if they are supported by a DBMS product. The ACID properties are
evaluated as worse, the more manual work it requires to implement or compensate for
the missing properties.

The development costs of a table design are evaluated to be “best” if there is no
need for special application programming, i.e. all replication problems are managed
by using DBMS tools. The development costs are evaluated as worse, the more man-
ual work it takes to develop and implement the replication design.

3.1 The n-Safe Design with the ROWA Protocol and the 2-Safe Design

In the n-safe design [14], the coordinating transaction manager commits a global
update if and only if all other n-1 participating transaction managers commit the up-
date locally. There are many versions of the n-safe design. In all the versions, it is
possible to optimize the write performance by not forcing the log records to durable
storage before they are sent. This is acceptable in the n-safe design because in case of
a disaster, it is extremely unlikely that all n copies of the log are involved in the disas-
ter. The 2-safe design is a special case of the n-safe design where only two copies of a
file exist.

Coordinator location Participant location

Client

Commit

Log records

Commit

Fig. 1. 2-safe database design

www.manaraa.com

78 L. Frank

In the ROWA (Read One Write All) protocol, only one lock is needed to read a re-
cord while all copies must be locked before an update can take place. Therefore, the
n-safe design with the ROWA protocol has the best read performance while the write
performance is evaluated as worst.

The ROWA protocol is very vulnerable to both communication and site failures.
The ROWAA (Read One, Write All Available) protocol is a new version of the
ROWA protocol. It is tolerant to both communication and site failures at the costs of
controlling that all participating copies are available when the transaction is commit-
ted. However, this extra control reduces the performance for all transactions. In stable
networks where failures are rare, it is therefore much better to restart the traditional
ROWA protocol with a new value of n in case of communication or site failures.

3.2 The n-Safe Design with the Quorum Protocol

The quorum consensus protocol is tolerant to both communication and site failures as
only a number of locations with a ‘quorum’ is necessary to access the data. In the
quorum consensus protocol, a number of ‘votes’ is assigned to each copy. Each read
operation must obtain a read quorum R before it can execute the read operation, and
each write/update operation must obtain a write quorum W before it can execute the
write/update. In order to obtain the isolation property, R and W must be selected in
such a way that W is greater than half the amount of votes and R+W are greater than
the total number of votes. If R = 1, W = the number of locations with a copy, and each
location has one vote, the quorum consensus protocol specializes itself to the ROWA
protocol, and therefore it is assumed in the following that R is greater than 2. In this
case, the ROWA protocol has a better read performance than the quorum consensus
protocol as the ROWA protocol only has to read one copy. The quorum consensus
protocol has a better write performance than the ROWA protocol as the quorum
consensus protocol only has to lock W copies before it is possible to write/update
replicated data. The quorum consensus protocol provides better availability than the
ROWA protocol as the quorum consensus protocol can tolerate some communication
and site failures.

3.3 The Basic 1-Safe Design

The basic 1-safe design [14] has a primary copy of the data that first must be updated
under normal operation. An update is committed when the primary copy update is
committed locally. After the primary copy has been committed, the log record is asyn-
chronously sent to the locations of the secondary copies, where the secondary copies
are updated. In case of a primary site failure in the basic1-safe design, production may
continue by temporarily selecting one of the secondary copies as a new primary copy.
Lost transactions are defined as the updates committed in an old primary copy that
has failed and not transferred to the location of the new primary location as a result of
the failure/disaster. Lost transactions must be reconstructed and re-executed before
the recovery process is finished. This problem can be reduced if a new primary copy
only is used in case of a disaster or a very serious failure. Therefore, we will only
recommend the basic 1-safe design in ERP tables when the updates can be executed
well in advance before they are needed. In this way, it is possible to use the cheap
basic 1-safe design with a very low risk of lost transactions.

www.manaraa.com

 Architecture for Distributed ERP Systems 79

 Primary location Secondary location

Client

Commit
 Log records

Commit

Fig. 2. 1-safe database design

3.4 The 0-Safe Design with Local Commit

In the 0-safe design with local commit, an update transaction will go to the nearest
database location, where it is executed and committed both globally and locally. Next,
retriable subtransactions are propagated asynchronously to the other database loca-
tions, where they are re-executed without user dialog and committed locally at each
location. As retriable updates may be initiated from any location, the different table
copies will often be inconsistent. As described earlier, the commutative updates coun-
termeasure may prevent retriable transactions from making lost updates.

 Nearest location Remote location

Client

Commit
Trans. record

Commit

Fig. 3. 0-safe database design

3.5 The 1-Safe Design with Commutative Updates

In the 1-safe design with commutative updates, the updates are transferred to the sec-
ondary copies in the same way as the 0-safe design with local commit, i.e. after the
global commit in the primary copy location, retriable subtransactions are initiated for
updating the secondary copies. In this design, lost transactions cannot occur because
the retriable subtransactions will be executed sooner or later. The lost update anomaly
can be prevented in the same way as described under the 0-safe design with local
commit.

3.6 The 0-Safe Designs with Deferred Commit

In the “0-safe designs with deferred commit”, an update transaction will go to the
nearest database location where it is executed and committed locally, but not globally.
Later, the update may be committed globally in a variety of ways depending on the
different versions of the replication method. In the 0-safe design with primary
copy commit, the global transaction is committed/rejected in a (remote) primary copy

www.manaraa.com

80 L. Frank

location. If the update of the primary copy is rejected, the first local update must be
compensated. If the update of the primary copy is committed, retriable subtransac-
tions will update the rest of the secondary copy locations.

3.7 The No-Replication Design

The no-replication design is by definition without on-line replication. For recovery
reasons, it is important to store remote off-line copies.

4 Implementation of Relaxed ACID Properties in Distributed
ERP Software

In a distributed ERP system, each local ERP system can use the resources/stocks
managed by the other local ERP systems. Many major companies have a physically
distributed sales and/or production organization. In such organizations, a distributed
ERP system may be useful. In this section, we will integrate the nested transaction
model described in section 2 with the different replication designs described in sec-
tion 3 to design a distributed ERP system with high performance and availability. By
using table 1´s evaluation overview, it is possible to select the most inexpensive table
design that fulfills the needs of an application. The following example illustrates how
this might be done. Frank [13] has also used the following example to illustrate how
to integrate distributed ERP systems with E-commerce systems.

The ER-diagram in Fig. 4 illustrates the most important entities and relationships
in a distributed ERP system. In the following, we will first describe the replication
design that we will recommend for the corresponding tables and argue for the recom-
mendation of the replication design. Next, we will describe how to prevent the conse-
quences of anomalies when relaxed ACID properties are used.

Fig. 4. ER Diagram of an example distributed ERP system

 The Location table is needed in all locations as it is used in the Orderlines to indi-
cate which store should deliver the products. We will recommend that the Location
table uses the basic 1-safe design with a central primary copy. The reason why we
recommend this design is that it is the cheapest replication design, and as the organi-
zation will know well in advance when new locations are created it should be possible
to create secondary copies long time before they are needed. Therefore, if a failure
occurs in the primary copy location, it is possible to defer all updates until the failure

www.manaraa.com

 Architecture for Distributed ERP Systems 81

has been repaired, i.e. no lost transactions will occur. In other words, no risks are
taken by using the inexpensive basic 1-safe design.

We will also recommend that the Product table uses the basic 1-s4. Implementation
of Relaxed ACID Properties in Distributed ERP Software safe design with a central
primary copy and secondary copies in all the remote locations. The reason why we
recommend this design is that the organization should know well in advance when
new products are created or changed. However, hard local competition may force the
organization to effectuate a quick local price change. In this situation, local prices
should be stored in a local table. The local Price tables do not need replication if the
prices of the selling location are used. This is the fairest solution as the buyer need not
know that the local branch office is out of stock.

We will recommend that the customer table for local customers is fragmented and
uses the basic 1-safe design with the primary copies in the locations that deal with the
local customers. The secondary copies should be stored in the central location where
they are used for backup, data warehousing, and control of whether a new customer is
local or not.

We will recommend that the customer table for customers who deal with more than
one branch office is fragmented and uses the 1-safe design with the primary copy in
the central location. The secondary copies should be stored in all the locations where
the customer has placed orders previously. The balance of a customer must be up-
dated each time an Order is invoiced. First, the balance should be updated in the local
Customer record. Later, the updating should be committed globally at the central
primary copy. From here, the other remote branch offices involved will (sooner or
later) receive the updates committed in the central primary copy location.

However, in practice it may be necessary for a common Customer table to use the
0-safe design with local commit because often a basic 1-safe design tool cannot toler-
ate primary copies in different locations.

We will recommend that the Order table uses the 1-safe design. Normally, Orders
are only used in the locations where the sales took place. Therefore, we will recom-
mend that the Order table is fragmented with the primary copy stored in the location
of the seller. A secondary copy should be stored in the central location for backup and
data warehousing purposes.

We will recommend that the Product-stock table is fragmented in such a way that
each store location has its own Product-stock records. Each fragment of the Product-
stock table should have the no-replication design, as it is too expensive to replicate a
stock record for each update. (A snapshot copy of the local Product-stock fragments
should be stored for backup in the central location).

We will recommend that the Orderline table is fragmented and uses the 0-safe de-
sign with primary copy commit in the location where the stock is reduced to fulfill the
order line. A secondary copy should be stored in the location that created the order.
However, the Orderline should always first be created in the database of the order
location. Later, the Orderline will be committed globally in a stock location where a
primary copy will be created.

When a salesman makes a new order, the salesman must first access or create a
customer record in the sales location. Next, a compensatable subtransaction will cre-
ate an order record with relationship to the customer record. The salesman can now
make order-lines. For each new order-line, a compensatable subtransaction will create

www.manaraa.com

82 L. Frank

an order-line and start a compensatable sub-subtransaction that updates the stock level
of the product ordered in the order-line (the pessimistic view countermeasure is used).
If the local stock location cannot fulfill the quantity ordered in the order-line, a com-
pensatable sub-subtransaction will be initiated for execution in another stock location,
etc. If an order-line cannot be fulfilled, a compensatable subtransaction must update
the field ‘quantity-delivered’ in the order-line. The pivot subtransaction that updates
the account of the customer will be executed when all the order-lines have been
confirmed by the servers of the stores. The pivot subtransaction has retriable sub-
transactions that update replicated customers.

In a distributed ERP system, the E-commerce system is integrated as any other lo-
cation, and therefore the E-commerce system can operate with or without its own
stocks as any other location [15].

5 Related Work

Different versions of the 1-safe and 2-safe designs have been described in e.g. [2], [3],
[4] and [5]. The “0-safe design with local commit” has been described by Frank and
Zahle [1] and used in practice for a number of years . The 2-safe designs, the basic
1-safe design, “the 1-safe design with commutative updates” and “the 0-safe design
with local commit” have all been described and evaluated in detail by Frank [6]. The
transaction model described in section 2 is the countermeasure transaction model
described in [1] and [7]. This model owes many of its properties to e.g. Garcia-Molina
and Salem [8]; Mehrotra et al. [9]; Weikum and Schek [10] and Zhang [11].

The evaluation of replication designs used in this paper have been described by
Frank [12]. Many new versions of the classic replication designs have been described
in recent years. The most important versions have been described on the basis of the
corresponding classic design. All the classic replication designs may be optimized by
group communication. However, group communication does not change the relative
evaluation of the replication designs if group communication is used in all the designs
that are compared.

An architecture for integrating a distributed ERP system with an E-commerce
system has been described by Frank [13].

6 Conclusions and Future Research

In a distributed ERP system, the different local ERP systems are integrated in such a
way that each local system can use the resources/stocks managed by the other local
ERP systems. In this paper, we have described how it is possible to integrate local
autonomous ERP systems in such a way that they function as a distributed ERP
system. In addition, the techniques used for integrating the systems can improve per-
formance and availability.

The reason we call our model distributed ERP system architecture is because we
use a general transaction model with relaxed ACID properties that can support many
different replication designs related to the common conceptual ERP database. In the
same way, it is possible to make distributed architectures for other enterprise applica-
tion areas to optimize performance, availability, and integration with other systems.

www.manaraa.com

 Architecture for Distributed ERP Systems 83

However, not all types of systems can be integrated as easily as ERP systems. The
reason is that special replication anomalies may occur when 1-safe and 0-safe designs
are used. These anomalies are not important in distributed ERP systems. However, we
have started a project aiming to describe where replication anomalies are important
and how to deal with them. Hopefully, Frank [17] will soon be able to publish the first
results of this project.

References

1. Frank, L. and Zahle, T, 1998, "Semantic ACID Properties in Multidatabases Using Re-
mote Procedure Calls and Update Propagations", Software - Practice & Experience,
Vol.28, pp77-98.

2. Garcia-Molina, H. and Polyzois, C., 1990, "Issues in disaster recovery", IEEE Compcon.,
IEEE, New York, pp 573-577.

3. Polyzois, C. and Garcia-Molina, H., 1994, "Evaluation of Remote Backup Algorithms for
Transaction-Processing Systems", ACM TODS, 19(3), pp 423-449.

4. Gallersdörfer, R. and Nicola, M., 1995, "Improving Performance in Replicated Databases
through Relaxed Coherency", Proc 21st VLDB Conf, 1995, pp 445-455.

5. Humborstad, R., Sabaratnam, M., Hvasshovd, S. and Torbjornsen, O., 1997, "1-Safe algo-
rithms for symmetric site configurations", Proc 23th VLDB Conf, 1997, pp 316-325.

6. Frank, L., 1999, 'Evaluation of the Basic Remote Backup and Replication Methods for
High Availability Databases', Software - Practice & Experience, Vol. 29, issue 15, pp
1339-1353.

7. Frank, L and Kofod, U, 2002, 'Atomicity Implementation in E-Commerce Systems', Proc
of the Second International Conference on Electronic Commerce, ICEB 2002, Taipei,
pp381-383.

8. Garcia-Molina, H. and Salem, K., 1987, "Sagas", ACM SIGMOD Conf, pp 249-259.
9. Mehrotra, S., Rastogi, R., Korth, H., and Silberschatz, A., 1992, "A transaction model for

multi-database systems", Proc International Conference on Distributed Computing Sys-
tems, pp 56-63.

10. Weikum, G. and Schek, H., 1992, "Concepts and Applications of Multilevel Transactions
and Open Nested Transactions", A. Elmagarmid (ed.): Database Transaction Models for
Advanced Applications, Morgan Kaufmann, pp 515-553.

11. Zhang, A., Nodine, M., Bhargava, B. and Bukhres, O., 1994, "Ensuring Relaxed Atomicity
for Flexible Transactions in Multidatabase Systems", Proc ACM SIGMOD Conf, pp 67-78.

12. Frank, L., 2005, "Replication Methods and Their Properties", published in: Laura C.
Rivero, Jorge H. Doorn, Viviana E. Ferraggine (Editors), Encyclopedia of Database Tech-
nologies and Applications, Idea Group Inc..

13. Frank, L., 2004, 'Architecture for Integration of Distributed ERP Systems and E-commerce
Systems', Industrial Management and Data Systems (IMDS), Vol. 104(5), pp 418-429.

14. Gray, J. and Reuter, A., 1993, "Transaction Processing", Morgan Kaufman, 1993.
15. Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E. and O'Neil, P., 1995, "A Cri-

tique of ANSI SQL Isolation Levels", Proc ACM SIGMOD Conf., pp. 1-10.
16. Breibart, Y., Garcia-Molina, H. and Silberschatz, A., 1992, "Overview of Multidatabase

Transaction Management", VLDB Journal, 2, pp 181-239.
17. Frank, L. 2006, 'Databases with Relaxed ACID Properties', a doctoral thesis submitted for

the Dr. Merc. degree, Copenhagen Business School. The thesis will probably be accepted
and published in 2006.

www.manaraa.com

Influence of Balancing Used in a Distributed
Data Warehouse on the Extraction Process

Marcin Gorawski and Pawel Marks

Silesian University of Technology, Institute of Computer Science,
Akademicka 16 street, 44-101 Gliwice, Poland
{Marcin.Gorawski, Pawel.Marks}@polsl.pl

Abstract. A data warehouse is filled with data during the extraction
process. Such a process is sometimes interrupted by occurrence of a fail-
ure. After a failure the warehouse contains an incomplete data set, a
part of the set is missing. To load the missing part of the data one of
the interrupted extraction resumption algorithms is usually used. In this
paper we analyze the influence of data balancing used in a distributed
data warehouse on the efficiency of extraction and resumption processes.
During resumption we base on the Design-Resume algorithm which im-
poses no additional overhead on an uninterrupted extraction process. We
present how the balancing is done and examine its influence on the ETL
process efficiency. Finally, basing on the results of performed tests, we
discuss advantages and disadvantages of the balancing with respect to
the ETL process.

1 Introduction

During the ETL process (Extraction Transformation and Loading) large amounts
of data are transformed and loaded to a data warehouse. It takes a very long
time, several hours or even days. There is usually a relatively small time win-
dow fixed for a whole extraction. The more data to be processed, the longer
the ETL process. Interruption of the process, for example due to hardware fail-
ure or lack of power supply, leaves the data warehouse with an incomplete data
set, which renders the warehouse unusable. To fix the situation the extraction
must be restarted. Such a situation is not rare. In a Sagent Technologies report
it is said that statistically every thirty extraction process is interrupted by a
failure [7]. After an interruption there is usually no time left for rerunning the
extraction from the beginning. In this case, the most efficient solution is to ap-
ply one of the interrupted extraction resumption algorithms. In this paper we
analyze the standard Design-Resume [5] algorithm (DR) featuring our modifica-
tions, and a combination of DR and staging technique (hybrid resumption). The
modified DR handles extraction graphs containing many extractors and many
inserters.

Most commercial tools or tools like Ajax [2] do not consider the internal
structure of transformations and the graph architecture of ETL processes. Ex-
ceptions are researches [8, 9], where the authors describe the ETL ARKTOS

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 84–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

Influence of Balancing Used in a Distributed Data Warehouse 85

(ARKTOS II) tool. To optimize the ETL process, there is often designed a
dedicated extraction application adjusted to requirements of a particular data
warehouse system. Our experience prompted the decision to build a developmen-
tal ETL environment using JavaBeans components. In the meantime, a similar
approach was proposed in [1].

Further speeding up of the ETL process forced us to abandon the JavaBeans
platform. The ETL-DR environment succeeds the previous ETL/JB (JavaBeans
ETL environment) and DR/JB (ETL environment with DR resumption sup-
port). The new ETL-DR environment is a set of Java object classes, used to
build extraction and resumption applications. This is analogous to JavaBeans
components in the DR/JB environment. In the DR/JB we implemented an esti-
mation mechanism detecting cases when the use of DR resumption is inefficient.
Unfortunately, the model we used did not take into account many significant ex-
ternal factors, like virtual memory usage. In the ETL-DR the situation changed.
We improved the implementation of the DR filters, which resulted in reduction of
resumption inefficiency. Now the resumption is almost always faster than restart-
ing the extraction from the beginning. Hence, we decided to stop research on this
mechanism. Another direction of our research is combining the DR resumption
with techniques like staging and checkpointing. Similar research was presented
in [5] where the authors compared the DR algorithm to its combination with
savepoints. They proved that the DR-savepoint combination performs a little
better than the pure DR. Unfortunately these experiments were performed on
very small TCP-D data sets . In our opinion opinion it gives non-representative
results, because in datawarehousing we have to deal with much larger datasets
than presented in [5]. In our implementation of the staging technique the data
transferred between nodes are also saved on a disk. After a failure the data can
be restored from the disk and there is no need process it again. Its disadvantages
are the quite big overhead imposed on the extraction processes by data saves
and, in some cases, loss of processing parallelism. In checkpointing, the state of
the whole extraction process is periodically saved. After a failure the processing
is reverted to the latest checkpoint. Unfortunately, the implementation of check-
pointing is not easy and often requires a lot of transformations modification. We
gave the name ”hybrid resumption” to the combination of DR and staging. This
approach performs better than pure DR algorithm. Research on checkpointing
is in progress.

In distributed systems it is important to utilize the computing power opti-
mally. This prompts system designers to use various balancing algorithms. In our
data warehouse the problem of balancing is also important. The more the perfor-
mance of machines comprising the warehouse differs, the more complicated the
balancing. We decided to use the partitioning algorithm for fact tables only. All
the other dimension tables are replicated on the machines without any modifica-
tion [4]. Such a balancing algorithm worked well and satisfied our expectations.
We now seek to analyze its influence on the efficiency of the extraction process.

Section 2 briefly describes the basic and modified DR algorithms. The hybrid
resumption algorithm is described in Sect. 3. In Sect. 4 is our test environment,

www.manaraa.com

86 M. Gorawski and P. Marks

and in Sect. 5 the general balancing algorithm is described. Resumption tests
with results and short comments are in Sect. 6. In Sect. 7 the obtained results
are discussed and the paper is summarized.

2 Design-Resume Algorithm

2.1 Basic Version of the Algorithm

The Design-Resume[5, 6] algorithm (DR) works using properties assigned to each
node of the extraction graph and data already loaded to a destination prior to
a failure. This algorithm belongs to the group of redo algorithms, but during
resumption it uses additional filters that remove from the data stream all tuples
contributing to the tuples already loaded (Fig. 1). An extraction graph is a
directed acyclic graph (DAG), whose nodes process data and whose edges define
data flow directions.

The algorithm is divided into two phases. In phase 1 the extraction graph is
analyzed and additional filters are assigned (Design procedure). In phase 2 the
filters are initialized with data already loaded into a data warehouse (Resume
procedure). The most important feature of the DR algorithm is that it does
not impose any additional overhead on the uninterrupted extraction process.
Algorithms like staging or savepointing usually increase processing time a lot
(as many as several times). The drawback of the DR algorithm is that it cannot
be applied if before a failure no output data were produced. Design procedure
is usually run once to assign filters that are needed during resumption. The
Resume procedure is run each time the ETL process must be resumed. It fetches
data already loaded from a destination, and uses the data to initialize additional
filters assigned in phase 1.

The basic DR algorithm, denoted later as DR(1), can resume efficiently only
a single-inserter extraction graph (an inserter is a loading node). This limitation
lowers the resumption efficiency, and encouraged us to modify the algorithm.

T(i-1) T(i) T(i+1) IE

T(i-1) T(i) T(i+1) IEF(i)

a)

b)

Fig. 1. Examples of simple extraction (a) and a resumption (b) graphs. E is an
extractor node reading data from a source. T stands for a transformation node, such
as filtration, grouping etc. I is an inserter loading data to a destination (a database ta-
ble, for instance). Graph (b) also contains additional filter node F . This node removes
from a data stream all tuples contributing only to the tuples already loaded to the
destination. Such a filter can be inserted on each edge of the extraction graph. Before
running the resumption it is initialized using data already loaded by the inserter.

www.manaraa.com

Influence of Balancing Used in a Distributed Data Warehouse 87

2.2 The Algorithm Modifications

The DR algorithm’s limitation disallowing the resumption of ETL processes with
many loading nodes is quite burdensome. The extraction graph must be divided
into segments containing one inserter each. Usually the data loaded by one of
the inserters are transformed by the same set of transformations as the data
loaded by another inserter. It is 100% true for distributed warehouses where
some of the tables are duplicated on the machines comprising the warehouse.
Dividing the graph into smaller parts and running them independently forces
some transformations to be run twice or more to do the same job. This time waste
would be eliminated if the original extraction graph was used for resumption.
To improve the algorithm we modified both Design and Resume procedures.

The first modification was analysis of which inserters are necessary during
resumption, and which have already completed the loading process. It is possible
because each inserter, after loading, writes its ID into the list of inserters that
finished the processing. The list is kept in an external disk file. Before resumption
the list is loaded from the file, and all inserters found on the list are removed
from the extraction graph. After removing the inserters, the transformations
that lost their destination nodes are removed also. In this manner we obtain
the resumption graph limited to the inserters that must be resumed and the
transformations and extractors processing data for them. This modification has
the biggest impact on the overall resumption efficiency. It also forces the DR
filters assignation routine to be run before each resumption, because the graph
structure changes.

Next, we introduced a transitive property sameSuffix. It was mentioned by
the DR algorithm authors in [5] but it was not developed. This property let
us to assign DR filters more optimally, and closer to extractors. Its influence
is mostly visible when the processing path divides into many paths performing
similar operations but loading data by separate inserters. Such a situation occurs
in distributed data warehouses.

After defining a new property we changed filter assignation rules. Now data
stream can be filtered in a common part of the graph even if it is targeted to
many inserters. We also had to modify the definition of the redundant filter, and
change the DR filters’ structure [5].

3 Hybrid Resumption

The general idea of the hybrid resumption is quite simple. It is a combined
resumption algorithm taking advantage of both the Design-Resume algorithm
and the staging technique. A similar approach combining the DR and savepoints
was examined in [5]. During a normal extraction process, each node previously
selected by the graph designer generates output data, sends it to the consecutive
nodes, and also writes each output tuple to a temporary disk file. When the node
finishes processing, the file it generates is marked as containing a complete data
set. The difference between savepoints and staging is, in staging technique there
are no periodical writes to external files. Only output tuples are stored in a file,

www.manaraa.com

88 M. Gorawski and P. Marks

E GrT FiT I

eID value date

101 1762 2003-12-17

102 345 2004-01-12

101 732 2003-10-08

104 143 2003-12-15

… … …

eID total_value avg_value

101 47456 738

108 34639 502

104 37564 149

106 45782 235

… … …

eID total_value

101 47456

108 34639

106 45782

112 56816

… …

Fig. 2. Example of ETL process with staging technique

not the state of a whole node, as in savepoints. An example of an extraction graph
to which staging is applied presents Fig. 2. Node E is an extractor, that reads
data from a source (database or file). The grouping node GrT works in staging
mode; it writes transitional (already produced) data to a disk file denoted by
” ”. The filter node FiT performs a simple filtration, and all the result tuples
are stored in a destination by inserter (loading node) I.

Extraction may be interrupted by a failure before or after the entire transi-
tional data file (or files) is written. When failure occurs without completing the
file, only a standard DR resumption can be applied. But, if the file is marked as
containing a complete data set, hybrid resumption can be used. In the first step,
from the extraction graph are removed all the nodes that correspond only to
the nodes working in staging mode. These nodes are unnecessary because they
do not need to be run again to get already-written transitional data. As can be
seen in Fig. 3, nodes E and GrT are removed. Next, the transitional data file is
connected as a source for FiT node. The modified graph is then analyzed with
the DR algorithm. As a result of the analysis an additional filter FCP , is inserted

FCP FiT I

eID total_value

106 45782

112 56816

117 36845

121 18452

… …

eID total_value avg_value

104 37564 149

106 45782 235

112 56816 336

117 36845 804

… … …

eID total_value avg_value

101 47456 738

108 34639 502

104 37564 149

106 45782 235

… … …

eID total_value

101 47456

108 34639

Fig. 3. Hybrid resumption after occurrence of a failure

www.manaraa.com

Influence of Balancing Used in a Distributed Data Warehouse 89

before the node FiT (Fig. 3). The filter is initialized with a part of the tuple set
loaded prior to a failure. Now the normal extraction process using the modified
extraction graph is started. Summing up, the staging part reduces the number
of nodes that have to be run during resumption, and the DR part reduces the
amount of data that must be processed.

Currently, we do not try to use incomplete transitional data files. Our goal
is to increase the resumption performance without imposing overhead on the
normal extraction process (not interrupted). To achieve it, we select for writing
transitional data files only the nodes that significantly reduce tuple stream size,
for instance aggregation or highly selective filtration. Aggregation nodes consume
tuples from input streams, and when the stream ends, they start producing an
output set. In most cases the time of producing an output set is much shorter
than the time spent on receiving and processing an input set. The possibility is
very low that a failure occurs between opening and closing a transitional data file.
When we deal with the filtration the situation is different. In such case, output
tuples are produced on the fly; each accepted tuple is automatically stored in
the file. Use of such a file is possible even if it is incomplete.

3.1 Hybrid Resumption in Theory

Given a graph path started with an extractor E, ended by an inserter I and con-
taining an ordered sequence of transformations T (i) (see Fig. 4), let us analyze
what actions must be taken in order to properly restart an extraction process
interrupted by a failure.

T(i-1) T(i) T(i+1) I

SD

E

Fig. 4. Graph path with one node using staging mode

An extractor produces tuples; they are transformed in nodes T (1)−T (i−1).
In node T (i) the tuples not only are processed and sent to the subsequent node,
they are also immediately stored in a stage data file SD without any unnecessary
delay. The moment of failure cannot be predicted; we assume it may happen at
any time. Three cases can be distinguished:

– no tuples are stored in SD file (or the file does not even exist),
– SD file contains a part of the expected data set; node T (i) is still running,
– SD file contains all tuples produced by node T (i); the node is stopped.

If no SD data is available before restarting the interrupted ETL process, it
means that the node T (i) has not yet produced any tuples. In consequence it
cannot be any tuple written to a destination by an inserter node. If there is no
stage data and no tuples in the destination, then the only possible action to

www.manaraa.com

90 M. Gorawski and P. Marks

F(I) T(i+1) I

SD

...

Filter initialization

T(i)

Fig. 5. Hybrid resumption when an SD file is complete

be taken is restarting the extraction, just like during the normal processing. No
modification in a graph path is made.

The resumption is most efficient when the stage data file is complete. The
complete data set must be recovered from the SD file and directly or indirectly
sent to the input of node T (i+1). If the inserter managed to load some data into
a destination prior to a failure, then contributors of the loaded tuples do not need
to reprocessed once again. These contributors should be removed from a tuple
stream as soon as possible using DR algorithm filters. Such filters can be placed
just behind the node recovering staging data (or somewhere else between T (i)
and I) and it needs to be initialized with data taken from the inserter I (Fig. 5).

F(I) T(i+1) I

SD

...

Filter initialization

T(i)

T(i-1)

F(SD)

...

E

Fig. 6. Hybrid resumption when an SD file exists but it is incomplete

www.manaraa.com

Influence of Balancing Used in a Distributed Data Warehouse 91

It can be any of the DR filter types, depending on the DR input properties set
by the designer.

The most complicated case is when the stage data file contains some data,
but it is not complete. To handle such a case efficiently, additional filtration
must be performed before and behind the node T (i) (Fig. 6). Filtration behind
T (i) is done in the same way as in the above case, when SD file is complete.
To perform the filtration before node T (i) one more filters must be inserted into
the graph; depending on the DR properties of the nodes preceding T (i) it can
be of prefix or subset type. The closer to the extractor the filter is placed, the
more efficient the resumption runs. The filter in comparison to a filter F (I) in
Fig. 5, is not initialized with data from the inserter, but its initialization set is
taken from the SD file of the node T (i).

Currently our hybrid resumption algorithm handles the cases when the stage
data file (or files) does not exist or contains a complete tuple set. We have not
implemented the incomplete SD file case yet, because in our research the simpler
version’s efficiency is sufficient. The extraction processes we run do not let us
observe the benefits that the complete hybrid algorithm (with incomplete SD file
handling) could offer. In our extraction graphs we do not have highly selective
transformations performing on-the-fly processing (see Sect. 6).

4 ETL-DR Extraction Environment

The ETL-DR environment is written in Java; it is a successor to the DR/JB
environment (see Sect. 1). However, in the new environment we do not use
JavaBeans technology. We gambled on simplicity, efficiency, and ease of further
development. The ETL-DR is a set of classes used by the graph designer to create
an extraction application. These are analogous to JavaBeans components in the
DR/JB environment. In comparison to the DR/JB, we significantly improved the
processing efficiency and the complexity of the most important transformations,
namely DR filters, grouping and joining.

Besides increasing the processing efficiency of the ETL-DR environment, the
most important fact is that we implemented a modified DR algorithm within
it (see Sect. 2.2). It enables the resumption of interrupted extraction processes
described by graphs containing many loading nodes. Moreover, to take advantage
of all the DR algorithm features, we use a modified algorithm of loading data into
a database. Tuples are loaded in a way making the inserter suffix-safe [5], which
means that the last loaded tuple is known. This can speed up the resumption
process significantly.

5 Balancing Algorithm

Let us introduce the concept of a fact table division factor denoted by pi [4].
Its value is a part of the fact table stored in the i node of the distributed
warehouse system. Basing on the aggregation time, the pi factor for each machine

www.manaraa.com

92 M. Gorawski and P. Marks

is iteratively computed. The goal of the balancing is to obtain node work time
similar to the mean work time. The balancing algorithm is as follows:

1. Load dimension tables into all nodes in the same form.
2. Set all fact table division factors to pi = 1/N , where N is the number of

machines comprising the warehouse.
3. Load a test subset of fact table, partitioned according to the division factors

into all nodes.
4. Perform test aggregation of the loaded set.
5. Compute imbalance factors. If maximum imbalance is smaller than assumed

value, go to 7; otherwise go to 6.
6. Correct division factors pi using the aggregation time values, go to 3.
7. Load a whole fact table, partitioned according to the last computed division

factors into all nodes.

In the first step, dimension tables are loaded. The same data set is loaded
into each node. The initial values of pi factors are set to 1/N where N is the
number of nodes. The next step of the algorithm is calculation of a fact table
partition plan:

1. Calculate H/Z-value for the localization of each meter (see Sect. 6), where
H denotes Hilbert curve and Z denotes Peano curve.

2. Sort meters according to H/Z-values in ascending order.
3. Allocate chunks to nodes using the round-robin method.

After loading the test data set, the test aggregation is performed and aggregation
times are collected. In the next step the imbalance factors are computed in
reference to the shortest time measured. If the maximum imbalance exceeds
the assumed limit, the corrections are made to division factors and the process
repeats. When the imbalance is small enough, then a final loading of a complete
data set is run.

6 Tests

6.1 Test Conditions

The base for our tests is an extraction graph containing 4 extractors and 15
inserters (loading nodes). The graph consists of three independent parts, but it
is seen by the extraction application as a single ETL process. To load data into
a distributed data warehouse consisting of 5 PC machines we had to increase the
number of inserters in the graph. Each inserter loads data into a single database
table. Finally we obtained the graph containing 75 inserters.

The ETL process generates a complete data warehouse structure (Fig. 7). It
is a distributed spatial data warehouse system designed for storing and analyzing
a wide range of spatial data [3]. The data is generated by media meters working
in a radio-based measurement system. All the data is gathered in a telemetric
server, from which it can be fetched to fill the data warehouse. The distributed

www.manaraa.com

Influence of Balancing Used in a Distributed Data Warehouse 93

INSTALLATION
CENTRAL FACT TABLE

GROUP_OF_READING

READING DATE

DATE

MAP

ATTRIBUTES

REGION

LOCALIZATION

ATTRIBUTES

METER

INSTALL_DATE

LOCALIZATION

DATE

INSTALL_DATE

ATTRIBUTES

WEATHER ATTRIBUTES

NODE DIMENSION

WEATHER SUBDIMENSION

MAP DIMENSION

METER DIMENSION

NODE

Fig. 7. Schema of the generated data warehouse

system is based on a new model called the cascaded star model. The test input
data set size is 500MB.

The data set is distributed over the 5 PC machines. All the dimension tables
are replicated and each machine gathers the same data set. The fact table con-
taining measurements from remote meters is divided into 5 parts according to
the result of the balancing algorithm described in Sect. 5. The inserters loading
data into fact tables are preceded by additional filter nodes (see Fig. 8). Their
task is to filter the tuples according to the distribution criteria. More detailed
graph description can be found in Sect. 6.2.

The tests were divided into two parts. First the balancing process were run
and the parameters for distribution filters were obtained. Then we ran a complete
extraction process, loading both dimension and fact tables. The fact tables were
distributed among the machines according to the balancing results.

During each loading test the extraction process was interrupted in order to
simulate a failure. The resumption process was then run and the time was mea-
sured. The collected measurement results permitted us to prepare resumption
charts showing the resumption efficiency depending on the time of a failure.

For the tests we used the following machines:

1. for ETL software:
– 1x PIV 2.8GHz 512MB RAM, Windows XP Prof, J2SDK 1.4.2 06

2. for distributed data warehouse based on Oracle 9i database:
– 1x PIV 2.8GHz 512MB RAM, Windows XP Prof
– 2x PIV 2.8GHz 512MB RAM, Windows 2000
– 2x PIV HT 3.2GHz 1GB RAM, Windows XP Prof

www.manaraa.com

94 M. Gorawski and P. Marks

VMQ(130) JoT(131) JoT(132) JoT(133) PrT(134) I(135)

PrT(100) GeT(102) I(103)

FE(1)

PrT(500)

PrT(501)

VMQ(506)

PrT(110) GeT(112) I(113)

PrT(120) GeT(122) I(123)

VMQ(220) JoT(221) JoT(222) PrT(223) I(224)

PrT(200) GeT(202) I(203)FE(2)

PrT(210) GeT(212) I(213)

VMQ(320) JoT(321) JoT(322) PrT(323) I(324)

PrT(300) GeT(302) I(303)FE(3)

PrT(310) GeT(312) I(313)

GrT(503) MeT(505)

GeT(504)JoT(502)

JoT(507) PrT(508) I(509)

FuT(520) I(521)

VMQ(410) JoT(411) JoT(412) PrT(413)

PrT(401) GeT(403) I(404)

PrT(400) PrT(405) GeT(407) I(408)

FE(4) FuT(414) MeT(416)

GeT(415) I(418)

FiT(417)

METERS

NODES

WEATHER

FACTS

MEASURE GROUPS

Fig. 8. Extraction graph used in distributed resumption tests. Inserters are marked
with double line ovals. Each node enclosed in the shaded rectangle is duplicated as many
times as there are destination machines comprising the warehouse. In our tests we used
5 PC machines. Node FiT (417) is an additional filter used in fact table distribution
process.

www.manaraa.com

Influence of Balancing Used in a Distributed Data Warehouse 95

Communication with the database was implemented using JDBC interface and
Oracle OCI drivers. Oracle SQL*Loader was also used for fast data loading
into database tables. Portions of data were loaded into temporary tables by
SQL*Loader, and simple INSERT queries moved the packets into target tables.
A single uninterrupted extraction process lasts about 65 minutes.

6.2 Detailed Description of the Extraction Graph

Basing on Fig. 8, extractors read the following data from source files:

– FE(1) - meters parameters (meterID, nodeID, locX, locY, locZ, type, scope,
monDate),

– FE(2) - weather changes around collecting nodes (nodeID, temperature,
humidity, clouds, measDate),

– FE(3) - collecting nodes parameters (nodeID, locX, locY, locZ, monDate),
– FE(4) - set of meter measurements records (meterID, date, time, zone1,

zone2).

Basing of the four source files, a complete data warehouse containing 15 tables
is generated. METERS, NODES and WEATHER dimensions consists of the
main table containing records describing particular meters, nodes or weather
states, and also additional sub-dimension tables with necessary attributes. The
required identifiers are created during the ETL process. The fact table contains
measurements from gas, energy and water meters. Some of them measure values
in two separate zones. Such records are transformed into records containing
one measured value each, with the zone number. The ETL process additionally
creates a set of measurement groups; meters of the same type belonging to the
same collecting node are put into the same group. Such a division is useful during
analysis performed by the DSS system that uses the warehouse.

6.3 Extraction and Resumption Tests

The goal of the tests is to examine the influence of the balancing algorithm
applied to our distributed warehouse system on the extraction process. We tested
a pure Design-Resume resumption algorithm and a hybrid resumption, which is
a combination of DR and staging technique. The tests base on the extraction
graph presented in Sect. 6.1.

Comparing Figs. 9 and 10 one may conclude that the use of balancing has a
marginally low influence on the performance of the extraction process. Of course
we must not generalize: this takes place in our distributed warehouse system,
where we have 5 machines acting as databases, and the extraction process is
run on a single PC. The advantage of the balanced extraction does not exceed
a few percentage points. Similarly there is no visible influence on the efficiency
of the resumption process. However, the difference between pure DR and hybrid
resumption is slightly bigger.

Looking at Fig. 11 we see that use of balancing makes the pure DR resump-
tion more efficient than the case of unbalanced hybrid resumption. Of course,

www.manaraa.com

96 M. Gorawski and P. Marks

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000

Failure time [s]

R
e

s
u

m
p

ti
o

n
ti

m
e

[s
]

Extraction DR resumption Hybrid resumption

Fig. 9. Efficiency of resumption when fact table is uniformly distributed without
balancing

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000

Failure time [s]

R
e

s
u

m
p

ti
o

n
ti

m
e

[s
]

Extraction DR resumption Hybrid resumption

Fig. 10. Efficiency of resumption when fact table distribution relies on the balancing
results

it does not take place in the whole range of the simulated failures. But for fail-
ures taking place before 1500 seconds of the extraction process, balanced DR
resumption performs better. The situation rapidly changes after 1500 seconds
(writing important part of stage data). From this moment on, balanced and un-
balanced cases of both algorithms have a similar efficiency, with the balanced
case enjoying a slight advantage.

In our opinion, the reason for such results is the single computer extraction
process. It does not matter whether we balance the system. The system bot-
tleneck during extraction is the PC running the extraction software. The other

www.manaraa.com

Influence of Balancing Used in a Distributed Data Warehouse 97

3400

3600

3800

4000

4200

4400

4600

0 1000 2000 3000 4000

Failure time [s]

O
v

e
ra

ll
p

ro
c

e
s

s
in

g
ti

m
e

[s
]

Extraction DR balanced Hybrid balanced

DR uniform Hybrid uniform

Fig. 11. Overall processing time as a function of the failure time. Overall processing
time is the sum of resumption time and the time of failure. It expresses the time needed
to ready the warehouse.

computers are fast enough to work efficiently even with unbalanced data. It is
likely that, in order to take advantage of the balancing, the extraction must
become a distributed process. This should preclude a single PC bottlenecking a
whole system.

7 Summary

In the paper we focused on the influence of the data balancing used in our
distributed warehouse system on the extraction and resumption processes per-
formance. The Design-Resume algorithm [5] designed by Labio et al was briefly
explained. This is the algorithm belonging to a group of redo algorithms. Its gen-
eral idea was presented and its relatively few drawbacks were pointed out. We
focused on the problem of resumption, when the extraction graph contains many
loading nodes, and modified the algorithm to handle such cases more efficiently.
An example of such a case was described in Sect. 6.1. The graph describes ETL
process loading data to a distributed spatial data warehouse collecting telemetric
measurements [3]. We examined a performance of the ETL process depending
on the data distribution method. There were two possibilities: data distributed
uniformly among system nodes according to the meter number, or balanced data
distribution [4], where the balancing goal was to obtain the fastest response time
of the system based on the warehouse.

As shown in the tests (Sect. 6.3), the influence of the balancing on the ETL
process is very low. We observed reduction of the extraction process time by
1-2%. In our opinion, the reason for this is the single machine extraction process.
In our tests the ETL software runs on one PC, and the 5 other PCs are warehouse

www.manaraa.com

98 M. Gorawski and P. Marks

system nodes running an Oracle database. We suspect that distributing the ex-
traction process on the larger number of machines could bring more advantages.
This is going to be the next step of our research.

References

1. Bruckner R., List B., Schiefer J.: Striving Towards Near Real-Time Data Integration
for Data Warehouses. DaWaK 2002.

2. Galhardas H., Florescu D., Shasha D., Simon E.: Ajax: An Extensible Data
Cleaning-Tool. In Proc. ACM SIGMOD Intl. Conf. On the Management of Data,
Teksas (2000).

3. Gorawski M., Malczok R.: Distributed Spatial Data Warehouse Indexed with Virtual
Memory Aggregation Tree. 5th Workshop on Spatial-Temporal DataBase Manage-
ment (STDBM VLDB’04), Toronto, Canada 2004.

4. Gorawski M., Chechelski R.: Spatial Telemetric Data Warehouse Balancing Al-
gorithm in Oracle9i/Java Environment, Intelligent Information Systems, Gdansk,
Poland, 2005.

5. Labio W., Wiener J., Garcia-Molina H., Gorelik V.: Efficient resumption of inter-
rupted warehouse loads. SIGMOD Conference, 2000.

6. Labio W., Wiener J., Garcia-Molina H., Gorelik V.: Resumption algorithms. Tech-
nical report, Stanford University, 1998.

7. Sagent Technologies Inc.: Personal correspondence with customers.
8. Vassiliadis P., Simitsis A., Skiadopoulos S.: Modeling ETL Activities asGraphs. In-

Proc. 4th Intl. Workshop on Design and Management of Data Warehouses, Canada,
(2002).

9. Vassiliadis P., Simitsis A., Georgantas P., Terrovitis M.: A Framework for the Design
of ETL Scenarios. CAiSE 2003.

www.manaraa.com

OLAP Schemata for Correct Applications

Hans-Joachim Lenz and Bernhard Thalheim

Free University Berlin, Institute of Production, Information Systems and Operations Research,
Garystr. 21, 14195 Berlin, Germany

Christian Albrechts University Kiel, Department of Computer Science and Applied
Mathematics, Olshausenstr. 40, D-24098 Kiel, Germany

hjlenz@wiwiss.fu-berlin.de, thalheim@is.informatik.uni-kiel.de

Abstract. OLAP applications are currently widely used in business applica-
tions. These applications are implicitly defined on top of OLTP systems. The
applications make use of aggregation functions and data combinations. A num-
ber of paradoxes is observed if arbitrary aggregation functions and combinations
are used. We develop a theory of aggregation functions, OLTP-OLAP trans-
formations, and of the data cube. Based on these investigations we derive an
architecture for OLTP-OLAP applications that supports sound and correct query-
ing: OLTP-OLAP specification frames. The specification frame of OLTP-OLAP
schemata specifically emphasises soundness of all operations involved by built-
in guards. Or to turn it around, we make provision that an innocent user does not
start non-sense operations. This specification frame is based on OLTP
schemata, OLTP-OLAP transformations, and a rigid theory of OLAP schemata
and functions.

1 Introduction

While OLTP systems are defined of a rigid mathematical way (e.g. [10]) OLAP sys-
tems lack so far of a rigid mathematical framework and of an engineering methodology
for sound application. OLAP functionality is based on cube operations [4] that provide
an intuitive way for data analysts to navigate through various levels of summary infor-
mation in the data warehouse. In a data cube, attributes are categorized into dimension
attributes and measure attributes. A number of pitfalls with respect to usage of OLAP
databases [8, 6, 9] may happen when cube operations are executed. For example, OLAP
operations are often not completely defined, the formal treatment of transformations
within OLTP databases and OLAP operators is contradictive or consequences of in-
herent (stochastic) dependency structures between dimensions are unknown, and the
innocent user does not know about implied side-effects.

Furthermore, a systematic treatment of OLTP-OLAP-transformations has not yet
been developed. Thus, this paper extends [8, 6, 9] by providing a formal basis for OLAP
schemata and for OLTP-OLAP transformations and by deriving a framework for sound
OLAP applications.

[12] distinguishes three kinds of architecture: application architecture consisting of
application modules, technical architecture that displays the overall (layered) structure
of the modules, and architecture of technical infrastructure describing the technical sys-
tems architecture. We develop a proposal for a technical architecture of OLAP systems

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 99–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

100 H.-J. Lenz and B. Thalheim

that is based on the OLTP-OLAP specification frame. This architecture support correct-
ness of OLAP applications and provides guarantees for correct computations. For sake
of convenience, we restrict the definitions to ER models [16].

2 The OLTP-OLAP Architecture

We define a layered OLTP-OLAP architecture by introducing an OLTP schema, by
characterizing aggregations, and by introducing OLTP-OLAP transformations. Based
on this framework we define the OLAP cube, OLAP query operations, and derive a
specification frame that might be used for guaranteeing correctness of OLAP
applications.

2.1 OLTP Schema

A database schema is based on a type system that is defined by the type definition

t = b | (A1 : t1, . . . , An : tn) | {t} | [t] | � : t

where � is a collection of labels and b is an arbitrary collection of base types, e.g., base
types such as BOOL = {T,F}, 1l = {1}, TEXT, PIC, MPIC, CARD, INT , REAL,
DATE, URL, and MAIL .

The union of all base types that are numeric is denoted by NUM. Confirming to
conventions of database typing we use the labeled Cartesian product (A1 : t1, . . . , An :
tn) instead of property collection. Since we do not need cyclic types we restrict the type
construction to rational trees [10].

This type system may be used to define ER-schemata through hierarchical database
types of level k E � (comp(E), attr(E), id(E)) where E is the name of the type,
comp(E) = {r1 : E1, . . . , rn : En} are the component types of level less than k with
pairwise different role names ri and the set attr(E) = {A1, . . . , Am} of attributes is
defined over domain types dom(Ai), and id(E) is a subset of (comp(E) ∪ attr(E)
called primary identification.

An entity type is a type of level 0 and does not have any component types.
An ER-cluster of level k frag(E) � {f1 : E1, . . . , fn : En} of fragments is defined

with pairwise different fragment names fi, database types (or clusters) Ei on levels
at most k. We usually assume that at least one component type is of level k − 1 for
each type of level at least 1. The domain types dom(E) are defined through the type
definition of E.

The database schema S consists of a finite set of database types and clusters and a
set of integrity constraints Σ.

An object over E = (comp(E), attr(E), id(E)) is the partial mapping

t : comp(E) ∪ attr(E) → dom(E).

The database DB over a database schema S consists of a set of objects defined over
types of DB. We require that the set of objects for each type E is uniquely identified by
their id(E)-values. Integrity constraints restrict the set of possible databases over S.

The first-order query algebra is defined with the basic functions projection (subtype
function), union, product, difference, composition, abstraction, evaluation, selection,

www.manaraa.com

OLAP Schemata for Correct Applications 101

empty : 1l → {t} , single : t → {t}, equality predicate, membership, and
triv : t → 1l.

General operations may be defined through structural recursion [1], for instance the
SQL selection operation is defined by

filter(ϕ) = src[∅,if then else◦ (ϕ × single× (empty ◦ triv)), ∪]

and the value transformation is defined through map(f) = src[∅,single ◦ f, ∪].
Operations may lead to new types, e.g. the generalized join t1 ��t t2 defined the

least common supertype t of t1 and t2. Operations can be based on identifiers, e.g.
URI’s.

Each query q of the query algebra has a type type(q). A view V on S is given by
defining query qV that is defined over a view schema SV .

2.2 Classes of Aggregation Functions

We distinguish aggregation functions according to their computational complexity:

– The simplest class of aggregation functions use simple (one-pass) aggregation. A
typical example are the simple statistical functions of SQL-92: count (absolute fre-
quency), average (arithmetic mean), sum (total), min, max.

– More complex aggregation functions are used in cumulative or moving statistics
which relate data subsets to other subsets or supersets, e.g. growth rates, changes in
an aggregate value over time or any dimension set (banded reports, control break
reports, OLAP dimensions). Typical examples are queries like:
“What percentage each customer contributes to total sales?”
“Total sales in each territory, ordered from high to low!”
“Total amount of sales broken down by salesman within territories”.

One can distinguish between distributive, algebraic and holistic aggregation functions:

Distributive or inductive functions are defined by structural recursion. Given types
T , T ′ and a collection type CT on T and operations such as generalized union
∪CT , generalized intersection ∩CT , and generalized empty elements ∅CT on CT

and given further an element h0 on T ′ and two functions defined on the types
h1 : T → T ′ and h2 : T ′ × T ′ → T ′, then we define the
structural recursion by insertion presentation for RC on T as follows:

srech0,h1,h2(∅CT) := h0
srech0,h1,h2(|{|s|}|) := h1(s) for singleton collections |{|s|}|
srech0,h1,h2(RC

1 ∪CT |{|s|}|) := h2(srech0,h1,h2(RC
1), h1(s))

iff RC
1 ∩CT |{|s|}| = ∅CT .

Distributive functions preserve partitions of sets, i.e. given a set X and a partition
X = X1 ∪ X2 ∪ ... ∪ Xn of X into pairwise disjoint subsets. Then for a distrib-
utive function f there exist a function g such that f(X) = g(f(X1), ..., f(Xn)).
Functions such as count, sum, min, max are distributive.

Algebraic functions can be expressed by finite algebraic expressions defined over dis-
tributive functions. Typical examples of algebraic functions in database languages
are average and covariance. The average function for instance can be defined
on the basis of an expression on count and sum.

www.manaraa.com

102 H.-J. Lenz and B. Thalheim

Holistic functions are all other functions. For holistic functions there is no bound on
the size of the storage needed to describe a sub-aggregate. Typical examples are
mostFrequent, rank and median . Usually, their implementation and ex-
pression in database languages require tricky programming.
Holistic functions are computable over temporal views. We will not discuss these
functions in detail within this paper.

2.3 OLTP-OLAP Transformations

OLTP-OLAP transformations are based on transforming functions

– a family of grouping functions G,
– a family of aggregation functions F , and
– a family of transformations T .

An example for a nonlinear transformation is the conversion of fuel consumption
l

100km 	→ miles
gallon [5].

Since application frameworks require that properties must be provable we need a frame-
work for OLTP-OLAP transformations too. This framework is based on the theory of
aggregation functions introduced next.

In general, an aggregation function is definable as a specific family F = {f0,,
fk, ..., fω} with functions fk : Bagk → NUM that map a bag with k elements to a nu-
merical range. A function fk is called symmetric if fk(x1, ..., xk) = fk(xρ(1), ..., xρ(k))
for any k-permutation ρ.

Definition 1. A family of functions (fk : Bagk → NUM |k ∈ N0) for bags on
dom(M) is called aggregation function on M if they are monotone according to the
order of NUM , symmetric, and each fk is defined through structural recursion on the
basis of f1,, fk−1 for k ≥ 2.

This definition is different from the definition given in [2]. We require associatedness
within the family whereas [2] considers functions fk on their own without relationship
and additionally require boundedness. Aggregation functions from F may have the
following properties:
Idempotent: fk(x,, x) = x for all x ∈ NUM ,
Min/Max-invariant: fk(min,, min) = min and fk(max, ..., max) = max for

the minimal and maximal elements in NUM ,
Continuous: limxi→x f(xi) = f(x) for all vectores xi, x of size k,
Lipschitz property: |fk(x1, ..., xk) − fk(y1, ..., yk)| ≤ c

∑n
i=1 |xi − yj | for some

constant c,
Self-identical: fk(x1, ..., xk) = fk+1(x1, ..., xk, fk(x1, ..., xk)),
Shift-invariant: fk(x1 + b, ..., xk + b) = fk(x1, ..., xk) + b,
Homogeneous (of degree 1): fk(bx1, ..., bxk) = bfk(x1, ..., xk),
Additive: fk(x1 + y1, ..., xk + yk) = fk(x1, ..., xk) + fk(y1, ..., yk),
Associative: fr(fk1(x1), ..., fkr (xr)) = fk1+...+kr(x1, ..., xr).
Proposition 1. Aggregation functions have the following properties:
max, min are idempotent, min-/max-invariant, continuous, self-identical, additive,
homogeneous, and associative and obey the Lipschitz property,

www.manaraa.com

OLAP Schemata for Correct Applications 103

sum is continuous, homogeneous, additive, associative, obeys the Lipschitz property,
and is not idempotent, not self-identical, not shift-invariant,
avg is idempotent, continuous, shift-invariant, homogeneous, additive, obeys the Lip-
schitz property, is not self-identical, not associative,
count is continuous, associative, obeys the Lipschitz property, not idempotent, not self-
identical, not shift-invariant but cardinality preserving, not homogeneous, not additive
but summarizable.

The proof of the proposition is straight-forward and thus omitted.
Depending on these properties, the behavior of aggregation functions varies. For

instance, if the aggregation function is not associative then roll-up may falsify the result.
The existence or the non-existence of null values in NUM is not only a design

issue, but heavily influences the behavior of aggregation functions. For instance, as
noted in [9] the min and max functions will not remain to be idempotent, the average
function can be defined in at least nine different ways.

2.4 The Data Cube

The data cube [4] is a fundamental data structure of OLAP databases, and is known
as multi-way table in Statistics. It is based on dimensional and measure (statistical)
attributes. We develop a proper theory of the cube generalizing and extending the
approach proposed by [16, 17].

Definition 2. Given for a type t and its domain dom(t).
– A grouping Li is defined on a set of selection expressions σαi,1 , ..., σαi,ni

.
– The grouping Li is finer than Lj if either αi,k → αj,l or (αi,k ∧ αj,l) ↔ 0 for all

k(1 ≤ k ≤ ni) and l(1 ≤ l ≤ nj). The trivial grouping is denoted by ALL.
– The grouping Li is a refinement of the grouping Lj (Li � Lj) if each group gi,k is

subset of exactly one group gj,l . In this case an anchoring function ancLi,Lj and
a relation descLi,Lj that is inverse to ancLi,Lj are defined for each pair Li � Lj .

– A hierarchically ordered dimension D consists of a type and a set of groupings
({LD

1 , ..., LD
n , ALL}, �) that form a lattice.

– Hierarchically ordered dimensions are well defined if all groupings form partitions
(are pairwise disjoint and form a cover).

According to [9] we consider only well-defined hierarchic dimensions in the sequel.
The time dimension is a typical example of a dimension. We use types Seconds,

Minutes, Hours, Days, Weeks, Months, Year and the linear partial orders Seconds �
Minutes � Hours � Days � Months � Years, Days � Weeks, Weeks �� Months, Weeks
�� Years, where the function ancMinutes,Hours maps minutes (e.g. 10:02 am) to the hour
they are embedded (e.g. 11 am). We may add also FiscalDays, WorkingDays etc.

Definition 3. A cube schema C = (D1, ...,Dm, M1, ..., Mk, ΣC) is given by

– a set of well defined dimensions {Di|1 ≤ i ≤ m} that form a key of C ,
– a set of fact attributes M1, ...Mk, an associated set of aggregation functions F , and

a set of associated transformations t1, ..., tk ∈ T , and
– a set of integrity constraints ΣC .

www.manaraa.com

104 H.-J. Lenz and B. Thalheim

Definition 4. A cube algebra is given by

– a cube schema C and
– an algebra consisting of at least navigation, selection, projection and split

functions.

In the sequel we show that cube operations must be applied and used with care and
with full understanding of the semantic and statistical properties of the data taken from
a given application domain. Moreover, they must be equal in all respects with the ob-
jectives of the corresponding decision making.

2.5 OLAP Query Operations

We introduce now the main query operations. Selection is based on a criterion that
is evaluated against data or levels of dimension in order to restrict the set of retrieved
data. Roll-up is an aggregation of data from a lower level to a higher level of granularity
within a dimensions hierarchy. Drill-down is the inverse of roll-up. Dice can be defined
by roll-up to ALL. Slice groups data with respect to a proper subset of dimensions of
a cube. The last four operations may be considered to be navigation operations. Thus,
the data cube is mainly queried by selection and navigation.

More formally, the following basic OLAP query functions are introduced for a cube
C = {(d1, ..., dm, m1, ..., mk)} defined on the cube schema (D1, ...,Dm, M1, ..., Mk,
ΣC) , a dimension D, the lattice ({LD

1 , ..., LD
n , ALL}, �) :

Basic drill-down functions are used for decomposing groups of data along a well-
defined dimension D. Given two groupings Li � L′

i of D. The values for the fact
values on M1, ..., Mk are obtained through ancLi,L

′
i by decomposition. We obtain

the cube C′ = {(d1, ..., dm, m′′
1 , ..., m′′

k)} that is bound to C by the condition
m′

j =
∑

(di,di)∈ancLi,L′
i ,(d1,...,d′

i,...,lm, ,...,m′′
j , ,...,)∈C′ m′′

j .

We observe that the corresponding aggregation functions must be additive along
Li � L′

i.
Basic dice functions are similar to projection in the first-order query algebra. Given a

dimension Di. The projection C′ = πD1,...,Di−1,Di+1,...,Dm(C) computes the cube
C′ with objects (d1, ..., di−1, di+1, ..., dm, m′

1, ..., m
′
k,) ∈ C′ such that m′

j =∑
(d1,...,dm,m1,...,mk)∈C mj for all j(1 ≤ j ≤ k).

We observe that the corresponding aggregation functions must be additive along
Li � L′

i.
Basic slice functions similar to selection of tuples within a set. Given a dimension

Di and a set V of values v with the granularity of LD
i , i.e. such values v for which

descALL,Li is defined. The cube δV (C) consists of those objects (d1, ..., dm, m1, ...,
mk) ∈ C for which di ∈ V .

Basic roll-up functions are the opposite of the basic drill-down functions, i.e. for given
Li, L

′
i with Li � L′

i, for the cube C, for M1, ..., Mk and descLi,L
′
i we obtain the

cube C′ = {(d′1, ..., d
′
m, m′

1, ..., m
′
k)} that is bound to C by the condition

m′
j =

∑
(di,d′

i)∈descLi,L′
i ,(d1,...,d′

i,...,dm, ,...,mj, ,...,)∈C
mj .

We observe that the relationship descLi,L
′
i must be disjoint within the cube C along

Li � L′
i.

www.manaraa.com

OLAP Schemata for Correct Applications 105

These operations may be combined using staggering of functions. We, thus, obtain drill-
down functions by superposing drill-down functions. Generalizing the first-order query
algebra, [16] defines additional OLAP operations such as

join functions for mergers of cubes,
union functions for union of two or more cubes of identical type,
rotation or pivoting functions for rearrangement of the order of dimensions, and
rename functions for renaming of dimensions.

We observe:

Proposition 2. The slice, drill-down, roll-up, union, rotate, and rename functions form
a relationally complete query algebra of OLAP operations.

The proof is based on the relational completeness of the corresponding operations of
the first-order query algebra.

2.6 The OLTP-OLAP Specification Frame

We already observed that the correctness of computations within the cube depends on
the aggregations and OLAP query functions, and on properties of the domains of fact
attributes M1, ..., Mk. If we do not need all OLAP query functions then correctness of
computation may be achieved more easily. If some of the aggregation functions are not
of interest in the given application we may exclude them. The domain types of the fact
attributes Mj may preserve a set Ψ of properties. Furthermore, the correctness depends
on the cube under consideration. Therefore, we propose specification frames restricting
OLAP applications.

Various modeling assumptions can be applied to cubes:

– Disjointness: OLTP-OLAP transformations are restricted to groupings which gen-
erate disjoint groups.

– Completeness: Groupings used for OLTP-OLAP transformations cover the entire
set of database objects.

– P-subset invariance: Fact values are stable if the OLTP database is restricted to
objects based on the policy P .

– P-union invariance: Fact values are stable if the OLTP database is extended by
new objects depending on the policy P .

– Equidistance: Used transformations T ∈ T are linear.

A policy restricts the modification of a database. Policies are used to automatically
enforce OLTP and OLAP constraints integrity. Integrity enforcement is based on the
constraints management supported by systems (checking mode, statement or row level,
pre- or postconditions, scope conditions, matching conditions, reference types), in-
tegrity constraint modules execution (scheduling, conflict resolution, and granularity
of triggers or procedures; order of execution), level of consistency during integrity con-
trol, and level of specification (declarative, imperative, interface-backed).

Domain types may be restricted by properties such as precision and accuracy, gran-
ularity, and ordering. Furthermore, domains can be based on scales, can represent clas-
sifications and can contain default values and neutral values. Domain values can be

www.manaraa.com

106 H.-J. Lenz and B. Thalheim

extended by measures, e.g., relative, absolute, linear and non-linear. Domain values can
be transformed by casting functions to values of other domain types. [16] distinguishes
nominal, absolute, rank, ratio, atomar, complex, and interval types.

Definition 5. A specification frame F = (A, O, Ψ, M) consists of a set A of aggre-
gation functions under consideration, a set O of OLAP query operations, a set Ψ of
properties, and a set M of modeling assumptions.

The cube C is called F-correct if the OLTP-OLAP transformations are restricted to the
functions in A, fact domains fulfill Ψ , and the modeling assumptions are valid for the
cube C.

Definition 6. An OLAP schema is based on an OLTP schema S and on a specification
frame F and consists of a set of F-correct cubes.

Next we show how to avoid incorrect application cases. Then we characterize OLAP
schemata by elaborating modeling assumptions.

3 Incorrect OLAP Applications and Their Properties

3.1 Summarization over a One-Way Table

The first category of problematic OLAP applications is related to grouping [8].

Proposition 3. Roll-up operations becomes incorrect if hierarchies used for the cube
are not based on the disjointness property for groupings.

The proof of this observation is straightforward.

3.2 The Simpson Paradox

Our next example leads into problems caused by cube operator ‘dicing’(margining).
Consider an example given in [4] as an example for well-designed cube on ’counts of
sold cars grouped by model, color, and year’ with slightly changed numbers:

Table 1. count (*) by model, color, year (data under a join dependency, i.e. MVD)

model Chevy Ford ALL
color blue white blue white ALL
year 90 91 90 91 90 91 90 91 ALL
count 255 156 88 82 174 102 222 175 1254

We can compute the following percentage from Table 1:

p(chevy|blue, 90) ≈ 59%, p(chevy|blue, 91) ≈ 60%

We observe that the market share of a blue car of type ‘chevy’ increases slightly over
years 90 - 91. The increase of the share is stronger for white cars:

p(chevy|white, 90) ≈ 28%, p(chevy|white, 91) ≈ 32%

www.manaraa.com

OLAP Schemata for Correct Applications 107

If we dice in Table 1 over ‘color’, we get:

p(chevy, 90) ≈ 46%, p(chevy, 91) ≈ 46%.

Evidently, the dicing operator may lead to contradictory results! This spurious effect is
called Simpson Paradox [13]. This happens if one dices or summarizes over a separator
Z of a binary join dependency which is a type of MVD Z →→ X |Y or binary join
dependency � (XZ, Y Z) of a relational scheme with attribute set X ∪ Y ∪ Z .

We summarize this subsection by an observation that is obvious.

Proposition 4. Dice or roll-up operations become incorrect if multivalued dependen-
cies are not preserved.

3.3 Non-commutative Operators

The following example is taken from [5]. Consider the Table 2 that provides a basis
for decisions of two investors, IG and IUK, whether to buy car A or B based only on a
nation-wide investment criterion, i.e. car economy or fuel consumption efficiency1. The

Table 2. Economy Indicators of three cars A,B, C compiled for two investors from Germany (col.
3) and Great Britain (col.4)

Car Type Area Consumption Rate l/100 km Range mi/gal
A City 16 14.7

Country 4 58.8
Overall Mean 10 36.7

B City 8 29.4
Country 8 29.4
Overall Mean 8 29.4

C City 20 11.8
Country 6 39.2
Overall Mean 13 25.5

cube in Table 2 represents the statistics ‘total efficiency’ (consumption rate and range)
or ‘mean efficiency’ by car type and area: Investor IG will prefer car B as the investment
object with minimum mean consumption, while investor and IUK, will vote for car A as
the winner due to a maximum range! The different decisions based on different decision
making criteria will disappear if cars A and C are compared. In this case, the data of
the cube lead both investors to the same decision even if they use their own decision
criteria.

Evidently, the investors in UK and D make coherent decisions based on the same
database as before! Why leads data analysis sometimes to contradictory results? The
answer is straightforward when one considers the operations involved in Table 2. The
involved transformation or mapping f : numeric → numeric is non-linear, i.e.
r′ = f(r) = c

r with c = 378.54118
1.609344 ≈ 235.2 . The second operation

1 Note, that the conditions of the tests are made comparable, i.e. same distances travelled in
Germany and same number of Gallons filled up for the rides in UK for both areas.

www.manaraa.com

108 H.-J. Lenz and B. Thalheim

involved is the arithmetic mean or average (avg), which is a linear mapping of type
mean : numeric × numeric → numeric and is defined by avg(v1, v2) = v1+v2

2 .
Remember now the following

Theorem 1 (Non commutative operators). Let O be a given set of numeric operators.
Let o1 ∈ O be a linear operator and o2 ∈ O a non-linear operator. Then it is
generally not true that o1 ◦ o2 = o2 ◦ o1 . In other words, the operators o1 and o2 are
not commutative.

Theorem 1 explains that transformation f and the arithmetic mean are not generally
inter-changeable. This fact is essential even in the phase of popularization of a data
warehouse as part of ETL (Extraction-Transformation-Loading).

3.4 Perfect Aggregation

Our next example is related to linear economic aggregation theory. Its beginning is due
to [3]. We consider N households and their data on monthly income and expenditures
over G months. The question arises whether it is feasible first to aggregate the data
across the N households and then to establish a time-invariant linear regression con-
sumption model between expenditures and income per month. Alternatively, is it feasi-
ble to start with N consumption models of expenditures and income for each household
first and then to aggregate over G months? Our main message is disappointing for cube
materialisation: There exists an appropriate homomorphism H only if a pseudo-inverse
of the aggregations are used [3, 11, 15] and [7].

Consider the following linear micro model y = Ax , where y′ = (Y1, Y2, ..., YG)
∈ RG is a vector of monthly expenditures of a household, x′ is a corresponding vector
of monthly income2 The homomorphism diagram in Figure 1 illustrates this evaluation
procedure.

x

�

A

T S

A

y

Y

�

�X

�

Fig. 1. Homomorphism diagram illustrating Theorem 2

Let T : RH → RJ (J ≤ H) be a linear aggregation function with X = Tx . The
corresponding macro model is Y = AX with Y ′ = (Y1, Y2, ..., YF). We define the
statistic S : RF → RG , and one gets ŷ = SY .

Definition 7 (Perfect (linear) Aggregation). The aggregation (S, T) is called perfect
iff ŷ = y.

The existence of a perfect aggregation is assured by the following theorem.

2 Notice, that we do not include errors in the equation for the sake of simplified presentation.

www.manaraa.com

OLAP Schemata for Correct Applications 109

university lectures ∅

morning

∅ evening lectures

evening

day inside term

∅

∅ evening lectures

evening

non-working day or day outside term

day

Fig. 2. Example of a collapsing hierarchy which prohibit roll-ups

Theorem 2 (Existence of a perfect aggregation). The perfect homomorphism

H : ŷ = y exists if and only if ŷ = SAT

for A = S+AT+ where S+(T +) is the Moore-Penrose inverse of S(T).

The theorem implies that an aggregation becomes incorrect if and only if the matrix A
is not used.

3.5 The Cube Operator in Collapsing Hierarchies

We close with an example from [9]. The day hierarchy (classification) in Figure 2 is
asymmetric and unbalanced. Such hierarchies may collapse whenever groups are com-
bined without preservation of the asymmetry. The inhomogeneous granularity of at-
tributes involved causes an in-coherency of information computed by the cube operator.

We observe that there exist a (dangerous) collapsing hierarchy, because no morning
lectures are given on non-working days. In such cases special attention must be paid to
a roll-up crossing various levels of the classification tree, and SQL queries concerning
different sub-trees, for instance reasoning on weak functional dependencies as defined
by [6]. The following observation is easy to prove.

Proposition 5. Summarization may become incorrect if hierarchies are collapsing or
the completeness modeling assumption is not preserved.

3.6 Loss of Identification in OLTP Schemata

Snodgrass uses in his book [14] an example that we can use for illustration of loss of
identification. He uses the cube in Figure 3 for development of temporal formula. The
data behind the cube must use, however, the entity type Cattle.

The schema may be used for Pen-Lot management. [14] demonstrates that history
tracking and application of roll-up, dice or slice functions lead to OLAP queries that
are very difficult to express through SQL. We may use this example to derive another
modeling assumption:

Proposition 6. Algebraic and holistic aggregation functions cannot be correctly used
if identification of objects is lost.

www.manaraa.com

110 H.-J. Lenz and B. Thalheim

THE CUBE OF [14] AGGREGATED OVER THE CATTLE TYPE

Lot Pen

HD CNT

penn idlot id nr from to

� �Resides

THE CORRECT OLTP SCHEMA WITH THE CATTLE TYPE

(0,.) (1,1) (1,.) (0,.)
� �

Belongs

To

Lot Cattle

lot id nr gender code penn idfrom

to

� �Resides Pen

Fig. 3. Example of an Identity Loss

4 Asserting Correctness

4.1 Properties of Aggregation Functions

The above presented observations may lead to the conclusion not to use the cube opera-
tor at all. We use them however for deriving correctness conditions for OLAP schemata.
On the basis of structural recursion we can prove a positive result for OLAP query op-
erations:

Theorem 3. Distributive aggregation functions are invariant for dice, roll-up, and
drill-down aggregation operations.

This property is not valid neither for algebraic nor for holistic aggregation functions.

Definition 8. Given a query function q, a database DB, and an aggregation function
f ∈ F . The function q is called F -invariant in DB if f(q(DB)) = g(DB) for appro-
priate f, g ∈ F .

DB

�

q

g f

q(DB)�

g(DB) = f(q(DB))
�

Fig. 4. Invariance of functions for transformations

We may directly conclude the following properties:

Corollary 1. Roll-up functions are neither sum-invariant nor avg-invariant in general.

Corollary 2. Roll-up functions are not min- or max-invariant in general.

Corollary 3. Rearrangement functions are min-, max-, count-, sum- and avg-invariant.

www.manaraa.com

OLAP Schemata for Correct Applications 111

4.2 Correctness Conditions

Incorrectness does not appear in any case. Cube operations may be still correct for
some data, whereas in other cases incorrectness becomes obvious. The development of
guidelines is a appropriate way to avoid incorrectness. We may include these guidelines
into the specification of OLAP schemata depending on the functions used. We use the
theorems, propositions and conclusions of previous sections and derive a number of
observations:

Drill-down functions are used for decomposing groups of data along a hierarchy.
Observation 1.
Drill-down functions are well defined if the cube construction is based on dis-
jointness and completeness modeling assumptions.

Observation 2.
Drill-down functions are well defined if data granularity is guaranteed at leaf
level L1 and no structural null are used at any level Li (i > 1) in between.

Roll-up functions are used for merging groups along a hierarchy. Problematic results
are observed for collapsing hierarchies especially in the case of algebraic and holis-
tic aggregation functions.
We consider groups gp,1, ...gp,s and gr,1, ..., gr,t of levels Lp � Lr.
Let Gi = {g ∈ Lp|anc(g) = gr,i}. Groups at level p may fulfill a property α. The
summarization over a fact attribute for all members of a group g is denoted by o(g).
Observation 3.
The Simpson paradox is observed if for groups at level Lp � Lr

(o(σα(Gi)) < o(σα(Gk)) �⇒ o(gr,i) < o(gr,k)
Observation 4.
Roll-up functions are only well-defined if data granularity (i.e. value identifiabil-
ity) is guaranteed at leaf level L1 and no structural null are used at any level Li

(i > 1) in between.
Observation 5.
Roll-up functions must be query-invariant, i.e. for the roll-up function o and the
query function q: q(x̄1, ...x̄n) = q(o(x̄1),, o(x̄n)) .

Observation 6.
Roll-up functions must be based on disjointness and completeness modeling as-
sumptions.

Dice functions are similar to projection, similar to marginalization in statistics, and
similar to summing up unions of values. They are unproblematic for distributive
functions. Algebraic aggregation functions may be combined with repairing
functions[9].
Observation 7.
The Simpson paradox is observed if for groups at level Lp � Lr

(o(σα(Gi)) < o(σα(Gk)) �⇒ o(gr,i) < o(gr,k)
Observation 8.
Dice functions can only correctly be applied if the cube construction is based on
union invariance, i.e. F(�∗

o∈gi
value(o)) = �∗

o∈gi
(F(value(o))) for groups gi for

the generalized union �∗.
If F is distributive then the �∗ ≡ F. If F is algebraic then repair functions must
be applied.

www.manaraa.com

112 H.-J. Lenz and B. Thalheim

Observation 9.
Dice functions can only be used along dimensions for which constraints among
cube dimensions are not lost, i.e. if the constraint set that is shrinked to the new
dimensions implies all constraints within these new dimensions.

Observation 10.
Dice functions must be based on disjointness and completeness modeling as-
sumptions.

Slice functions are similar to selection of tuples within a set. They are subset operation
and equivalent to conditioning in statistics.
Observation 11.
Slice functions must be query-invariant, i.e. for the slice function o′′ and the
query function q: q(x1, ...xn) = q(o′′(x1),, o

′′(xn)) .

Observation 12.

Slice functions must be subset invariant.

Constraints invalidated by subset construction are those integrity constraints that
have to be expressed through ∀∃-constraints[16], e.g., inclusion dependencies, mul-
tivalued dependencies, tuple-generating constraints.

OLTP-OLAP transformations can cause paradoxes or lead to problematic OLAP
schemes. Statistics and the theory of mathematical functions have developed a rich
theory, e.g., [2], that must be considered for OLTP-OLAP transformations. The
arithmetic average is very sensitive to extreme values such as outliers and may be
distorted by them.
Observation 13.
Application of median instead of mean average functions for aggregation leads
to a robust OLAP query operation.

Observation 14.
Harmonic mean functions n

n
i=1

1
xi

are shift-invariant, additive, symmetric, con-

tinuous, and homogeneous.
Note, if we use this mean in Table 2, all three comparisons will become coherent.
Observation 15.
Geometric mean functions n√x1 · x2 · ... · xn provide a better picture for relative
scales among values and are OLAP query invariant.

5 Conclusion

This paper demonstrates how OLAP applications must be restricted by constraints in
order to guarantee correctness of OLAP query operations. We introduced the OLTP-
OLAP transformations and propose a mathematical definition of cubes that allows to
define the classical OLAP query operations. Based on these definitions we introduce
OLTP-OLAP specification frames that should become part of an OLAP repository. We
demonstrate the power of the approach by revisiting paradoxes of OLAP computa-
tions and by deriving properties that provide correctness of of OLAP computations.
The OLTP-OLAP specification frame can be considered as a specific layered (techni-
cal) architecture that allows to correctly reason in OLAP applications.

www.manaraa.com

OLAP Schemata for Correct Applications 113

References

1. P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax. SIGMOD
Record, 23(1):87–96, 1994.

2. T. Calvo, G. Mayor, and R. Mesiar. Aggregation operators - New trends and applications.
Physica, Heidelberg, 2002.

3. W. D. Fisher. Optimal aggregation in multi-equation prediction models. Econometrica,
30:744–769, 1962.

4. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, and M. Venkatrao. Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min-
ing and Knowledge Discovery, 1(1):29–53, 1997.

5. D. J. Hand. Deconstructing statistical questions (with discussion). Journal of the Royal
Statistical Society, Series A, 157:317–356, 1994.

6. W. Lehner, J. Albrecht, and H. Wedekind. Normal forms for multivariate databases. In
SSDBM X, Capri, 1998.

7. H.-J. Lenz. Contribution to the discussion on ”Deconstructing statistical questions” by David
J. Hand. Read before The Royal Statistical Society , London, Dec 15th 1993.

8. H.-J. Lenz and A. Shoshani. Summarizability in OLAP and statistical databases. In SSDBM
IX, 1997, Washington, 1997.

9. H.-J. Lenz and B. Thalheim. OLAP Databases and Aggregation Functions. In Proc. 13th
Intern. Conf. on Scientific and Statistical Database Management, Jul 18-20, 2001, George
Mason University, Fairfax, Virginia, USA, pages 91–100. IEEE Computer Society, 2001.

10. K.-D. Schewe and B. Thalheim. Fundamental concepts of object oriented databases. Acta
Cybernetica, 11(4):49–81, 1993.

11. H. Schneeweiß. Das Aggregationsproblem. Statistische Hefte, 6:1–26, 1965.
12. J. Siedersleben. Moderne Softwarearchitektur. dpunkt-Verlag, 2004.
13. C. H. Simpson. The interpretation of interaction in contingency tables. JRSS, series B,

13:238–241, 1951.
14. R. T. Snodgrass. Developing time-oriented database applications in SQL. Morgan Kauf-

mann, San Francisco, 1999.
15. D. Sondermann. Optimale Aggregation von großen Gleichungssystemen. Zeitschrift für

Nationalökonomie, 33:235–250, 1973.
16. B. Thalheim. Entity-relationship modeling – Foundations of database technology. Springer,

Berlin, 2000.
17. P. Vassiladis and S. Skiadopooulos. Modeling and optimization issues for multidimensional

databases. In Proc. CAiSE’2000, LNCS 1789, pages 482–497. Springer, Berlin.

www.manaraa.com

Towards a Secure Data Stream Management
System

Wolfgang Lindner1 and Jörg Meier2

1 MIT, Cambridge,
MA, USA

wolfgang@csail.mit.edu
2 University Erlangen-Nuremberg

Erlangen, Germany
sijomeie@stud.uni-erlangen.de

Abstract. Todays data stream management systems (DSMSs) lack se-
curity functionality. Based on adversary scenarios we show how a DSMS
architecture can be protected. We sketch a general DSMS architecture
and introduce security issues that need to be considered. To face the
threats we develop an extended system architecture that provides the
necessary security mechanisms. We descuss the chosen concepts and il-
lustrate how they can be realized by various system components. Our
design focus is, considering the unique properties of data stream engines,
to keep the impact on existing system components as little as possible
and to limit the effect on the overall performance to a minimum.

1 Introduction

Data Stream Management Systems (DSMSs) have been developed over the past
several years. The focus of research was on query processing and optimization
[2], distribution [9] and most recently integration of data sources [3]. Security
issues have not been addressed.

DSMSs differ from existing systems such as database management systems
(DBMSs) in many aspects. For instance users run continuous queries which
produce results by processing a continuous data stream. Without proper security
mechanisms users have access to the entire system, including the ability to view
and modify its behavior, data, and queries.

Because of this lack we focus in this paper on how to secure DSMSs based on
the unique properties of such systems. Next, we introduce some scenarios which
show the way a DSMS is used normally. In a second step we illustrate possible
attacks to an unprotected DSMS.

As an example consider a DSMS that processes stock prices. It receives the
changing share prices as an input data stream and executes queries of different
customers based on that information. A company providing this system gets
paid for delivering the results to its customer’s queries. We can describe the way
users work with the system by the following use cases.

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 114–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.manaraa.com

Towards a Secure Data Stream Management System 115

An administrator sets the system up, connects certain data sources contain-
ing stock price information, and supervises the system while it is running. The
operation company might want to integrate different data sources from certain
information providers. These sources delivering streamed data have to be at-
tached to the system. Based on the agreement between a certain customer and
the operating company the administrator ensures that the user is able to per-
form the tasks he paid for. A customer connects to the system with a client
application, browses through the available data sources, inserts queries to the
DSMS, receives the results, and uses them. A customer might want to change
a query to get different results or to adjust the running query. He might also
insert additional queries or delete existing ones. Customers might store certain
query results in the system for later analysis, e.g., the average price each day for
certain shares.

Now imagine an adversary attacking such a system without proper security
mechanisms. We consider the following scenarios:

1. The adversary connects to the system and (a) sees all available data sources
and possibly (b) the internal state of the system disclosing the other users’
identities and their operations including the results. The malicious user can
infer from that information strategies and possible plans of competitors.

2. Not only by connecting directly to the system the adversary can read ”con-
fidential” data, but also by intercepting the connection of the output stream
to other clients.

3. The adversary can modify data by inserting certain operators into the query
graph. Another customer might therefore get incorrect stock prices and make
decisions which may cause financial damage.

4. In addition, it is possible that the adversary (a) fakes the incoming data
before it reaches the DSMS by changing it at any point in the network
which the data passes. Also, he could (b) pretend to be a certain information
supplier and deliver incorrect or even malicious source data.

5. A malicious user can perform unauthorized tasks. For example, (a) using
certain operators for data processing without having permission. That also
includes (b) administrative actions like changing certain settings or even
shutting down the whole system.

6. An attacker could claim to be a certain customer and perform actions on
behalf of that customer, e. g. deleting stored data, changing or quitting run-
ning queries. Again, that could cause financial damage to the real customer
who uses the results.

7. An adversary could fully load the system by performing queries that consume
the whole available system capacity, e. g. in terms of computational power.
He might also increase his queries’ priorities so that the queries of other
customers can not deliver results in time.

According to [7, 15], these adversary scenarios can be clustered into three
threat categories. We associate the described scenarios with the following
categories:

www.manaraa.com

116 W. Lindner and J. Meier

(C1) Improper release of information, which can be further divided into
(C1a) disclosure of data [scenarios 1a, 2] (either inside the query network or

while transferring it over the network) and
(C1b) disclosure of system internals [scenario 1b].

(C2) Improper modification of data, where we distinguish between
(C2a) changes outside the system [scenarios 4a, 4b] (before the input stream

reaches the system or after the output stream leaves the system) and
(C2b) changes inside the query network [scenarios 3, 5a, 6] (either the streaming

data or the query graph).
(C3) Denial of service attacks [scenarios 5b, 7]

In this paper we address all of these problems. After sketching a general
DSMS architecture in Sect. 3, we briefly describe common security aspects that
need to be considered in Sect. 4. We address the illustrated security problems
with proper solutions in Sect. 5. We show how the introduced mechanisms can
be integrated into the architecture.

2 Related Work

As far as we know, none of the current DSMSs provides security. The following
projects are examples for such data stream processing engines.

Borealis [1], an existing prototype, which is been developed at Brandeis Uni-
versity, Brown University, and MIT, is based on Aurora [2] and Medusa [16].
Aurora* is a distributed version of Aurora while Medusa is a federated distrib-
uted system. Many of the ideas in Borealis are developed in these two projects.
These prototypes use a XML description for schema and queries in a box-and-
arrow semantic. STREAM [4] or the STanford stREam datA Manager is sup-
posed to be a “general-purpose” DSMS and is a project of Stanford University.
To express queries, a language called CQL (Continuous Query Language) is in-
troduced. Declarative queries are compiled into a query plan. PIPES [12] is a
project of the University of Marburg using a ”hybrid multi-threaded scheduling”
three layer architecture. TelegraphCQ [8], a general system for adaptive data flow
processing with an extension to support shared continuous queries, is a project
developed at Berkeley University.

3 Background

To propose solutions for securing DSMSs we briefly sketch a general data stream
architecture. Next, we discuss security issues that have to be considered.

Our general architecture of a data stream processing system (ignoring
distribution [9] and high availability [10]) is shown in Fig. 1. We derived the illus-
trated architecture mainly from the mentioned prototypes and research projects
[16, 4, 12, 8].

We differentiate between user-interaction with the system, which is shown on
the top right of Fig. 1, and administrative actions which take place on the top left.

www.manaraa.com

Towards a Secure Data Stream Management System 117

Query Processor

Optimizer

Operator Executer

Scheduler Monitor

Control Channel

Admin QoSCatalog

Queue Manager

Queue

Queue

Queue
Oper-
ator

Oper-
ator

Input
Stream

Oper-
ator

Output
Stream

A
dm

in

R
eq

ue
st

Input
Stream

I/O
 In

pu
t C

ha
nn

el

I/O
 O

ut
pu

t C
ha

nn
el

Fig. 1. Common DSMS Architecture

The latter includes management tasks like connecting or disconnecting streams.
Every request reaches the system through the Control Channel. The Query
Processor (QP) is the core of the system. The actual transformation of the
incoming data stream (via the I/O Input Channel) is done there by combin-
ing operator-boxes, executing them in the Operator Executer and, finally,
streaming the results to the I/O Output Channel. The query optimization
process is controlled by the Optimizer and is supported by the Scheduler and
the Monitor. Queues are managed by the Queue Manager. They are able
to provide views on data streams as well as temporarily store data for window
based operations. Queues can also be used between two operator-boxes. The
Admin module controls the system, especially the QP. Every control interac-
tion with the system is managed here. The QoS component keeps track of the
overall system performance and the adherence to given QoS-requirements. The
Catalog stores meta-data and query diagram descriptions. It is accessible by
all components. The Catalog is consulted when a user wants to access objects
in the system.

In the future the described architecture can be extended with a database
attached to the DSMS. In this way persistently stored data can be processed to-
gether with streaming data and users are able to save information, e.g. calculated
results (as an example see the use cases in Sect. 1). This extension enables the
DSMS to provide the user with a service which includes traditional data man-
agement (like in DBMSs) together with stream processing capabilities. However,
we do not consider this scenario due to the limited space here.

www.manaraa.com

118 W. Lindner and J. Meier

4 Security Issues

Securing an information system in general involves different security issues. To
reach the three major security goals, which are confidentiality, integrity and
availability, different mechanisms exist: Authentication, authorization and ac-
cess control, auditing, encryption, digital signatures and message authentication
codes. We will not focus on inference security, privacy aspects, physical or hard-
ware security, nor operating system security.

Next, we briefly present the concepts behind authentication, authorization
and access control, as well as encryption, since they are essential for imple-
menting any security mechanism and data protection. They address the security
categories C1 and C2, which are introduced in Sect. 1. The remaining aspects
are out of scope of this paper and not further investigated. Availability is related
to category C3.

In accordance with [7] we use the following terms: A subject is a user or
programs that runs on behalf of a user that accesses the system. Any entity in
the system that contains data or allows operations to be executed is called an
object. Access controls are responsible for ensuring that all subjects access the
objects in the system according to certain security policies.

4.1 Authentication

In order to distinguish between different identities (subjects), we need to authen-
ticate. Authentication is any process by which the system verifies that someone
is who he claims he is. This usually involves a username and a password, but
can include any other method of demonstrating identity, such as biometric at-
tributes [7]. Authentication measures can be distinguished between knowledge,
possession and biometrics. The unique identification of subjects is the basis of
every further authorization mechanism.

4.2 Authorization

Once a user is identified, the authorization process has to decide if the subject
is permitted to access a certain resource (object) [7]. This is usually determined
by finding out if that person is a part of a particular group, if that person has
paid admission, has a particular level of security clearance, or has certain access
rights. Authorization is based on access control, which consists of access rights
and control policies.

4.3 Access Control

Access Control ensures that every access to the system occurs according to cer-
tain security rules. That involves different aspects: Access Rights, Access Matrix
and Control Policies and other issues like Quality of Service and Time-based ac-
cess. We illustrate them in the following paragraphs.

Access Rights. In [13] a reference for database access rights is given based on
the SQL99 standard: grant, revoke, select, insert, delete, references, update, grant

www.manaraa.com

Towards a Secure Data Stream Management System 119

option, create, and drop. Commercial database systems like Oracle or Microsoft
SQL-Server distinguish several of these access rights. We briefly describe the
most important ones:

– Select. The data in the system can be read. That includes the meta data
(e.g. the schema) about an accessed object.

– Insert. Data can be added and saved persistently.
– Delete. Stored Data can be deleted.
– Grant option. Access rights can be passed to other subjects.
– References. The right to define foreign keys.
– Create, Alter, Drop. Creating, changing or deleting the schema.
– Grant, Revoke. The permission to change access rights.

Access Matrix and Control Policies. Once a subject is authorized (or a
process running on behalf of users), we want to determine whether or not the
given identity is allowed to access a resource. Thus we need to implement a rela-
tion between subjects and objects with certain access rights. As described in [14]
there are two different concepts to implement an access matrix that will estab-
lish the connection between subjects and objects by storing the corresponding
access rights.

– Access Control Lists. Each object has a list of valid subjects with their
access rights. This list is called an ACL [14].

– Capabilities. Each subject owns a list of objects with corresponding access
rights [14].

Also, [14] distinguishes between three different policies:

– Discretionary Policies. Discretionary protection regulates subject access
to objects based on identities and authorizations that specify the access
mode for each subject and each object in the system.

– Mandatory Policies. Mandatory policies govern access based on classifi-
cation of subjects and objects by security level. A security level reflects the
sensitivity of the information. The security level of a subject reflects the
subject’s trustworthiness. The levels are elements of a hierarchically ordered
set (e.g. top secret - secret - confidential - unclassified). Depending on the
security level of a subject and the object the subject requests, the access is
granted or denied.

– Role-based Policies. Role-based access controls (RBAC) regulate access
based on the activities the user executes in the system. It is required to
identify roles which are associated with a set of actions and responsibilities.
Access authorization on objects are specified for roles. A user playing a role
is allowed to execute all accesses for that role. Roles can be hierarchically
organized [14].

A temporal extension to RBAC is proposed in [6]. Temporal-RBAC adds
time-based constraints to the model including periodic role enabling and dis-
abling and temporal dependencies among such actions. A formal description
and an implementation is given in [6].

www.manaraa.com

120 W. Lindner and J. Meier

Based on such a policy it is possible to store both allow-rules which give a
certain right to a subject (closed system) and deny-rules which explicitly remove
a right for a subject (open system) [7]. When both possibilities exist the system
has to know in which order the rules should be applied.

Quality of Service. Besides access rights (such as whether or not a subject
is allowed to perform a certain action), we also consider with which ”quality”
an action is executed. Think of applications where customers who want high
quality have to pay more than others. Quality can vary along different properties.
Related to stream processing, we consider the following.

– Latency. How fast will the answer arrive (single tuples).
– Jitter. How big are the fluctuations in latency.
– Bandwidth. How much data is transferred in a given amount of time.
– Priority. Which priority does the user’s query have (in relation to others).

4.4 Encryption

To ensure confidentiality of transferred data we have to secure communication
links. These links are either inside the system among different nodes in a distrib-
uted environment or they are connections from the system to a outside point,
e.g. to a client. We have to make sure that only the authorized destination
of a data connection is able to read the data. Another issue is data integrity,
which ensures that the information is not subject to unauthorized changes dur-
ing transfer. Both problems can be solved using cryptographic mechanisms such
as encryption, electronic signatures and message authentication codes. There
are existing protocols such as IPSEC [11] which can be used for that purpose or
special protocols could be developed. How such protocols affect QoS when being
applied, has to be evaluated.

4.5 Challenges in DSMSs

In contrast to discrete queries (as in database systems) users enter continuous
queries to process streaming data in DSMSs. As a consequence, the control-
and the dataflow is separated (Control Channel and I/O Input/Output
Channel).

Further, the QP arranges operators which process data streams and the op-
timization process continuously adjusts the query network. This dynamic recon-
figuration has to be considered because data and operations might be merged
inside the system and we have to ensure that the results a user gets suit the
authorization rules.

Another aspect is the different user abstraction level DSMSs provide. Either
there is a SQL-like interface (analog to DBMSs) or users work with the system via
a box-and-arrow-semantic specifying, a data flow. The security concept has to be
implemented according to the used model because the system’s changed behavior
reflecting the security functionality affects directly the users’ interactions with
the system.

www.manaraa.com

Towards a Secure Data Stream Management System 121

An important challenge is to keep the impact of the security checks on the over-
all system performance as small as possible (system load, latency, throughput).

5 Security Model

In Sect. 1 we illustrated how an unprotected DSMS can be attacked. We now fo-
cus on the problem of improper release of information (data or running queries)
and improper modification (outside or inside the system). Based on the general
DSMS architecture we propose solutions for these problem classes.

5.1 Secure DSMS Architecture

The three major mechanisms towards a secure DSMS that face the described
threats are: First associating an identity with users by authentication, second
deciding if and in what way access is allowed by authorization and access control,
and third securing communication to ensure confidentiality and integrity.

Figure 2 shows the extended architecture including the security components.
One of the design goals was to reduce the impact on the existing system compo-
nents as much as possible so that every module can still focus on its specific task.
The optimization process inside the QP for instance is able to work indepen-
dently of the security mechanisms. Each of the components, which are described

Query Processor

Optimizer

Operator Executer

Scheduler Monitor

Admin QoSCatalog

Queue Manager

Queue

Queue

Queue
Oper-
ator

Oper-
ator

Oper-
ator

Output
Stream

User Abstraction Layer

Authenticator Authorizer

F
ilt

er

E
nc

ry
pt

ed
 T

ra
ns

po
rt

E
nc

ry
pt

ed
 T

ra
ns

po
rt

Input
Stream

Input
Stream

Session Manager

A
dm

in

R
eq

ue
st

Encrypted Transport

Control Channel

I/O
 O

ut
pu

t C
ha

nn
el

I/O
 In

pu
t C

ha
nn

el

Fig. 2. Secure DSMS Architecture

www.manaraa.com

122 W. Lindner and J. Meier

in the following paragraphs, is responsible for a specific task and can be assigned
to one of the described security mechanisms:

a) Associating identities with users and ensuring that to every request for the
system the corresponding subject is known

- Session Manager
- Authenticator

b) Deciding if, and in what way, access to certain objects is allowed and ensuring
that a subject only gets the information it is allowed to see

- Authorizer
- User Abstraction Layer
- Filter

c) Ensuring confidentiality and integrity of transferred requests and data
- Encrypted Transport (for input and output streams)
- Encrypted Transport (for users’ and administrators’ requests)

Session Manager. The Session Manager. assigns each request to a session
which belongs to a subject. This assignment is the basis for further authentica-
tion and authorization. Before the first request is accepted by the system the
user has to prove his identity via the Authenticator.

Authenticator. The Authenticator checks whether a user is the one he
claims to be. This can be done by providing a name and password. There are
different ways a user can prove his identity [7]. We do not focus on these any
further. The authenticated name is mapped to an internal user-id which identifies
the subject uniquely. This id is the basis for the later authorization mechanism.

Authorizer. As stated before, once a user is successfully authenticated, a user-
session is established including the corresponding user-id. Every further action or
command the user requests has to be checked for permission by the Authorizer.

The Authorizer has to grant or deny any requested action. It implements
the access control and security model illustrated in the following paragraph.
This enables the system to decide whether or not a requested action on a certain
object is allowed. This verification can be done before any other component is
instructed to process the request.

Based on RBAC [14], we propose a security model for DSMSs that is il-
lustrated in Figure 3. We distinguish between four entities: Users (subjects),
roles, objects and permissions (access rights, e.g. read, modify, delete). Roles are
associated with permissions on objects. Roles summarize certain access rights
necessary to perform a certain job function. Users ”can play” certain roles and
they activate one or more roles in a session when they log in the system. Users
get the permissions of all their activated roles.

As in existing systems, such as the Unix file systems, we add the owner
relationship to the RBAC model. We refer to this model as OxRBAC (owner-
extended RBAC). An object always has an owner which is a user. By creating an
object (e.g. by inserting a query the instantiated query operators are created)

www.manaraa.com

Towards a Secure Data Stream Management System 123

user role

object permission

n m
can play

n m
session

n m
has

k

1 n
owner

Fig. 3. OxRBAC Security Model

the user becomes the owner of this object and gets all available access rights
for it. As a basic set of objects to manage, we propose the following: schema,
stream, query, operator, view, and system.

There are several permissions and roles which can be predefined, e.g. an ad-
ministrator role which has all permissions for controlling the system and chang-
ing its behavior, including altering permissions and adding other users and roles.

Furthermore we define the following rule for maximizing security: Everything
which is not allowed explicitly is denied, meaning rights have to be assigned
explicitly to roles by using allow-rules (closed system).

In contrast to DBMSs, where updates and insertions of data in stored re-
lations are possible, we do not have to consider these actions in a pure data
stream environment because the calculated tuples are only read by the clients.
Since we believe that an extension to the general architecture will be that DSMSs
are able to store data temporally or persistently, we include the corresponding
access rights in the following considerations.

We distinguish between three categories of access rights: Rights for users,
administrators, and rights relating to connected data sources:

a) User rights:
– Read. The data on an available stream (or on a view of it) can be read.

That includes that the user sees the stream and its meta data when he
is browsing through the catalog to define his query.

– Execute. Execution refers to operators. By having the right to a certain
operator, the user can include it in his query (e.g. a join or an aggregate
function).

– Insert. Data can be saved persistently to an attached storage.
– Delete. Stored data can be deleted.
– Pass right. Access rights can be passed to other subjects.
– Special operators. Which operators a user is allowed to perform, e.g.

a certain user is only allowed to use an aggregation operator but no join
operator.

www.manaraa.com

124 W. Lindner and J. Meier

b) Additionally for managing the system some extended access rights must
exist:

– Attach, Detach. Analog to tables in DBMSs (create and drop), streams
must be attached to the system as data sources. The detach right allows
to disconnect a stream again.

– Create view, Alter view, Drop view. Unlike in DBMSs where you
create, alter or drop tables and views, these operations are only possible
on views (on streams) in DSMSs.

– Grant, Revoke. To change access rights on objects, the subject (either an
owner or an administrator) needs these rights on the corresponding object.

– Shutdown, Restart, Adjust system behavior. Administrative oper-
ations like these can be handled with execution rights on corresponding
functions (which are also modeled as system objects) in the system.

c) Lastly, we manage rights related to data sources. In contrast to DBMSs
where users ”produce” data in order to store it, in a DSMS information
is delivered by the streaming sources. An application which sends data to
the system runs on behalf of a certain user. Based on the user’s roles (e.g.
”information provider”), permissions are managed on that stream object. In
this way, information providers are authenticated and only trusted partners
are able to send data to the system. To be able to limit the actions an
information provider could initiate through sending replacement or deletion
tuples as described in [1], we introduce the following rights:

– Insert. Normally data is inserted to source streams. Therefore the insert
right is needed. Without that right on a certain stream, an information
provider cannot interact with the DSMS.

– Update. Some providers might send correction messages for previously
transferred tuples. For sending such replacement tuples the update right
is needed.

– Delete. A special case of replacement tuples is a deletion tuple. To be
able to delete a previously transmitted tuple, the delete right is necessary.

User Abstraction Layer. To ensure that a subject only gets to see the objects
it has permissions for, we provide individual views on the system. Such a view,
which only includes objects and operations the subject is allowed to access, is
provided by the User Abstraction Layer. Considering the use cases of Sect.
1, a user browsing the catalog or looking at running queries only sees the objects
he is authorized for. The User Abstraction Layer has to establish a relation
between the individual views of different subjects and the real internal state of
the system, e.g. the whole query network. This component communicates with
the Authorizer to check access permissions on objects.

The available interface to interact with a DSMS might be either a descriptive
language (analogous to SQL, like CQL [4]) or a formal description of the desired
data flow, from source to destination, including the transforming operators in
between (like the boxes and arrows in [2]). The User Abstraction Layer has
to provide a user-specific view on the system corresponding to the used model.

www.manaraa.com

Towards a Secure Data Stream Management System 125

Filter. The second module we introduce to avoid improper release of informa-
tion is the Filter at the end of the QP. It ensures that an output stream for a
certain subject only contains data the subject is allowed to get. This is necessary
because as a result of query optimization it might be possible that streams and
operators of different users get combined and merged inside the QP. However,
the output of the QP has to be a set of distinguished user streams. By intro-
ducing the Filter we allow the QP and Optimizer to work independently of
the security checks. Not only is the implementation easier because every com-
ponent provides separated services, but the impact on performance will also be
smaller as we do not influence any optimization algorithm or constrain the QP
in any way. Further, access to output streams of the Filter has to be synchro-
nized with the corresponding request that produced the output. The request is
checked for permission by the User Abstraction Layer via the Authorizer.
Subsequently the Filter has to ensure that only an allowed subject gets the
corresponding query results. In that way the Control Channel is secured by
authorization and the actual data transfer is protected by access control.

Encrypted Transport. We propose to install components in the DSMS archi-
tecture to secure data transfers, both at the stream (input and output) and the
request side of the system (Encrypted Transport).

To ensure that data is transferred confidentially so that only the authorized
participants are able to access it, we need to encrypt the data and the control
channels. Referring to the secured architecture, different levels of encrypting the
data transfer are possible.

– Inside the system. The flow of information inside the system should be
encrypted, especially when we assume that the query processing takes place
on different nodes connected via a network.

– Outside the system. Both the transferred data via I/O Input Channel
and I/O Output Channel and the requests for the system via Control
Channel should be secured.

We assume that nodes of the same DSMS can be trusted and the network is
under our own control. Then, the second case is the important one because the
information leaves the system boundaries and we cannot be sure which path it
takes to reach the client.

However, since the purpose of this paper is to develop a security framework
for DSMSs, rather than showing how to adopt existing encryption algorithms,
details for securing the data transfer are not considered here.

5.2 Example

Considering the use cases illustrated in Sect. 1, the behavior of the DSMS changes
with the introduced security mechanisms in following way:

A user connects from a client to the DSMS server by using an encrypted
transportation protocol. The server proves its identity by providing a certificate.

www.manaraa.com

126 W. Lindner and J. Meier

After the establishment of that connection through the Encrypted Trans-
port the user interacts with the DSMS. Every request which reaches the system
through the Control Channel is associated with a session (inside the Session
Manager), which is owned by a certain user. Before being able to perfom any
action, the user has to log in, proving his identity. After a successful authenti-
cation process inside the Authenticator, certain roles the user is allowed to
play are activated, a new session is established, and every further request is con-
nected to that session. Every action requested by the user can now be checked
for permission by the Authorizer. The user browses the catalog, where he only
sees objects he is allowed to access through the User Abstraction Layer.
He inserts a query by using available data sources. The system integrates the
inserted query in the internal query network and calculates the results. The user
connects to the produced output stream, which is available at the Filter, by
using another encrypted communication link to the Encrypted Transport at
the output side of the DSMS. As the user gets his individual view of the system,
he can look at his running queries and modify them. Finally the user logs out
and closes the connections to the system.

5.3 Future Issues

For sake of completeness, we briefly want to mention two aspects, that we will
not further investigate because of limited space. These are secure distribution
and quality of service.

Distribution. Many existing DSMSs, like Borealis [1], include distribution func-
tionality for load balancing and high availability. A distributed security concept
has to provide solutions for:

– Trusted authentication. We have to ensure that a user logged in at one
site can use the complete distributed system as one service. Either there is a
single point of entry for a user to connect to the whole system, or users can
interact with the distributed nodes at different sites.

– Permission management. The rules necessary for checking permissions
have to be replicated among the participating sites so that access control is
possible wherever resources are used.

– Different administrative domains. In federated DSMSs, like Medusa
[5], sites can be under the control of different administrative domains. Data
that is distributed has to be protected from unauthorized access by users
working at another site. The access control mechanisms have to work in
a global way, prohibiting unwanted disclosure of information. We propose
further to introduce the possibility for the users to decide whether or not
data processing could be pushed to other sites.

– Secure communication. In a distributed environment the secure com-
munication inside the system, as mentioned before, becomes important to
ensure that only allowed processes connect to output streams of other nodes.
The network connecting the sites might be untrusted.

www.manaraa.com

Towards a Secure Data Stream Management System 127

QoS. To provide a QoS-based security service as described in Sect. 4, the QoS
module of the system has to be extended too. Depending on the rules defining
QoS-properties for subjects, actions must be taken to guarantee them. For in-
stance a subject might be allowed to set the priority of his query to a certain
level while others are not allowed to do so.

6 Conclusion

As the adversary scenarios show there are different threats to unprotected DSMSs.
In this paper we proposed solutions towards a secure system. We gave a general
overview and showed which problems have to be investigated. We focused on two
main threat categories: Improper release and improper modification of data. We
described the concepts which are necessary to solve these problems. Based on the
introduced system architecture we illustrated how the security mechanisms can
be implemented. The third problem, denial of service attacks, was partly solved by
the authorization process as we did not consider auditing and QoS-related security
features in our solution.

The concept we propose in this paper is generic enough to be integrated into
any existing data stream management system and therefore an ideal basis for
enterprise architectures.

Currently, we are building a first prototype by implementing the proposed
security features into Borealis [1], proving that a DSMS can be secured without
creating too much of a performance overhead.

References

1. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The Design of the Borealis Stream Processing Engine. In CIDR, 2005.

2. D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data
stream management. VLDB Journal, 2003.

3. D. J. Abadi, W. Lindner, S. Madden, and J. Schuler. An integration framework
for sensor networks and data stream management systems. In VLDB, 2004.

4. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,
U. Srivastava, D. Thomas, R. Varma, and J. Widom. Stream: The stanford stream
data manager. IEEE Data Engineering Bulletin, 26(1), 2003.

5. M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based load man-
agement in federated distributed systems. In NSDI, 2004.

6. E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A temporal role-based access
control model. ACM TOISS, 4(3), 2001.

7. S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison
Wesley, 1994.

8. S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah.
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In CIDR,
2003.

www.manaraa.com

128 W. Lindner and J. Meier

9. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing,
and S. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

10. J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and
S. Zdonik. High-Availability Algorithms for Distributed Stream Processing. In
ICDE, 2005.

11. IETF. IPSec. http://www.ietf.org/html.charters/ipsec-charter.html.
12. J. Krämer and B. Seeger. Pipes - a public infrastructure for processing and ex-

ploring streams. In SIGMOD, 2004.
13. R. Ramakrishnan and J. Gehrke. Database Management Systems, chapter Security

and Authorization. Mc Graw Hill, 3rd edition, 2003.
14. Ravi S. Sandhu and Pierrangela Samarati. Access Control: Principles and Practice.

IEEE Communications Magazine, 32(9), 1994.
15. V. L. Voydock and S. T. Kent. Security mechanisms in high-level network protocols.

ACM Computing Surveys, 15(2), 1983.
16. S. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Balazinska, and

H. Balakrishnan. The Aurora and Medusa Projects. IEEE Data Engineering
Bulletin, 26(1), 2003.

www.manaraa.com
D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 129 – 143, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Efficient Zoning Technique for Multi-dimensional
Access Methods

Byunggu Yu1 and Seon Ho Kim2

1 Computer Science Department, University of Wyoming,
Laramie, WY 82071, USA

yu@uwyo.edu
2 Computer Science Department, University of Denver,

Denver, CO 80208, USA
seonkim@cs.du.edu

Abstract. In emerging database applications that deal with large sets of multi-
dimensional data, the performance of the query system significantly depends on
the performance of its access methods and the underlying disk system. In recent
years, hard disks are manufactured with multiple physical zones, where seek
times and data transfer rates vary significantly across the zones. However, there
is a marked lack of investigation on how to optimize multidimensional access
methods given a zoned disk model. The paper proposes a novel dynamic zoning
technique called DMD-Zoning that can be applied to a variety of multidimen-
sional access methods and that can fully utilize zoning characteristics of hard
disks for busy multi-user database systems.

1 Introduction

In recent years, hard disks are manufactured with zoned recording (or zoning), which
groups adjacent disk cylinders into zones [10,17]. Tracks are longer towards the outer
portions of a disk platter as compared to the inner portions. Hence, more data can be
recorded in the outer tracks when the maximum linear density, i.e., bits per inch, is
applied to all tracks. The results are multiple physical zones in a disk, where seek
times and data transfer rates vary significantly across the zones. However, there is a
marked lack of investigation on how to optimize dynamic multidimensional access
methods (i.e., multidimensional access methods that can efficiently accommodate
insert and delete operations at run-time without reorganizing the entire index struc-
ture) given a zoned disk model. Instead, conventional access methods have been
developed based on a traditional disk model that comes with many simplifying
assumptions such as an average seek-time and a single data transfer rate.

The performance of an access method of database can be improved when the follow-
ing conditions are met: Cond. 1. The index structure of the access method is split into
disjoint parts each of which is stored in a specific disk zone in its entirety; Cond. 2.
At every point in time, all running threads are accessing only one zone and a thread
accesses another zone only after it completes all required accesses to the current zone.

Because the physical zones of a disk do not necessarily have the same data transfer
rate, we can further optimize the performance by modifying Cond. 1 as follows:

www.manaraa.com

130 B. Yu and S.H. Kim

Modified Cond. 1: more frequently accessed pages are stored in a faster zone. Consid-
ering a tree-type index structure and random queries, one can think of approximating
the access frequency of each page by means of the level of the page in the index struc-
ture. For example, the root page of an index structure has the highest access frequency
among the pages constituting the index structure, since every search must access the
root. In this sense, the leaf level pages are associated with the lowest access fre-
quency. Therefore, the level of a page in the index structure determines the zone in
which the page is stored. This is a simple and straightforward approach that can be
applied to any tree-type index structure and the basis of the idea of pinning a few top
levels of an active index structure in the database buffer space [7]. However, this
approach ignores the underlying data distribution, and all queries that produce a
non-empty result must access all the zones. In fact, this approach is based on the as-
sumption that all pages at the same level are equally important and have the same
likelihood of being accessed by a random query. In practice, this is not the case.

For each unknown random range query, a page that has a larger range in the data
space is more likely accessed. Considering non-uniformly distributed data objects, it
is often the case with any index structure that a page has a larger range in the data
space than an upper level page that is not a direct ancestor. In addition, when the
query distribution follows the underlying data distribution, a page that encloses more
data objects in the data space has a higher access probability. Moreover, in many
applications, the queries have no "affinity" for certain dimensions or the query pat-
terns often change over time. In this case, all dimensions are equally important, and a
page that has a smaller perimeter in the data space tends to have a lower average ac-
cess frequency. Therefore, the access frequency of each page should be determined by
the actual region of the page in the data space and, optionally, the number of data
objects that the page encloses. Consequently, the placement of a page on to a specific
disk zone is determined by its access frequency.

To meet Cond. 2, one can consider locking-based approach. While a specific zone
is being accessed by one or more threads, all the other zones on the same disk must be
locked. The locking-based approach incurs additional waiting time that is more
pronounced when a thread is allowed to access another zone before it completes all
necessary accesses to the current zone, since the search thread should wait for the
zone to be unlocked each time it moves into a different zone. Therefore, an efficient
search thread control mechanism needs to be developed.

This paper proposes a novel dynamic zoning technique called the DMD-Zoning
(Dynamic Multi-Dimensional Zoning) that can be applied to a variety of one- or
multi-dimensional access methods and that can fully utilize zoning characteristics of
hard disks. In the DMD-Zoning, index structures are placed in such a way that all
disk zones are almost equally utilized and that more frequently accessed index pages
are stored in a faster disk zone (this meets Modified Cond. 1). Then the generalized
query processing technique of the DMD-Zoning significantly improves the query
performance by reducing page retrieval times from the hard disk (this meets Cond.
2). For a focused discussion, this paper considers only a single disk case. However,
the techniques proposed in this paper can be generalized to multi-disk (e.g., RAID)
systems.

www.manaraa.com

 An Efficient Zoning Technique for Multi-dimensional Access Methods 131

2 Multi-zone Disks

One of the most important physical characteristics of a modern magnetic disk drive
is its zones: a disk consists of several zones, each providing a different storage
capacity and transfer rate. Zoned recording (or zoning) is an approach utilized by
disk manufactures to increase the storage capacity of various types of disks [10].
This technique groups adjacent disk cylinders into zones [10,17]. Tracks are longer
towards the outer portions of a disk platter as compared to the inner portions; hence,
more data may be recorded in the outer tracks when the same maximum linear
density (i.e., bits per inch) is applied to all tracks. A zone is a contiguous collection
of disk cylinders whose tracks have the same storage capacity, i.e., the number of
sectors per track is constant in the same zone. Hence, outer zones have more sectors
per track than inner zones. Different disk models have different number of zones
(e.g., Seagate Cheetah X15 has 9 zones; Seagate Barracuda 7200.7 has 15 zones).
Different zones provide different transfer rates because: 1) the storage capacity of the
tracks for each zone is different, and 2) the disk platters rotate at a fixed number of
revolutions per second.

A multi-zone disk consists of multiple disk zones. Each disk zone consists of one
or more disk cylinders. Note that all cylinders in the same zone have the same data
transfer rate. A rotational latency is determined by the disk revolution time. A seek
time between two locations on a disk, x cylinders apart, can be calculated using a
practical non-linear approximation, seek(x) [17]. A page read/write time consists of a
seek time, a rotational latency, and a page transfer time.

3 Zoned Index Structure

In most secondary storage access methods, the index structure is a hierarchy of index
pages that form a balanced tree with a single root. At every level of the structure, the
d-dimensional data space is recursively divided into hyper-rectangles. The rectangle
of the root page encloses the entire data set.

The leaf pages contain the actual data objects or data entries. A data entry <coor-
dinates, tuple_pointer> contains the location (coordinates) of a d-dimensional point
data in the space and the address (tuple_pointer) of the corresponding data record
(object) in the underlying database. Every interior page contains index entries. An
index entry is a <region_descriptor, child_pointer> pair, where region_descriptor
represents the minimum hyper-rectangle enclosing all the data points stored in the leaf
pages of the subtree rooted at the child page indicated by the child_pointer. In spatial
access methods (SAMs) that are designed for regional data objects, coordinates of
every data entry is replaced by region_descriptor of the corresponding regional data
object1. Thus, SAMs can be easily modified to index point data.

An index structure is built and updated in two ways: 1) bulk-updating and 2) dy-
namic updates. In the latter case, each data object is inserted or deleted at run-time.

1 Typical approximations of regions in space include minimum bounding rectangles (MBRs),

minimum bounding circles (MBCs), and minimum bounding polygons (MBPs). Since MBR-
based approximations are characterized by intermediate complexity and accuracy, they tend
to be used more frequently [1,6,7,8,11,12,13].

www.manaraa.com

132 B. Yu and S.H. Kim

An efficient dynamic update algorithm for an index structure is required when the
index structure is used in an operational database in a transactional environment.

In recent years, efficient bulk-updating algorithms are required in many database
applications where static index structures are built on a populated data set that is sel-
dom or periodically updated. For example, in many databases for analytical tasks
(e.g., data warehouses and data marts), index structures are built on an already popu-
lated data set. Each update (if there is) typically inserts or deletes a relatively large
number of data objects. Bulk-updating is based on a bulk-loading or packing algo-
rithm that can build or reorganize an index structure on an existing data set. A bulk-
loading algorithm is typically designed for a certain index structure. For example, a
bulk-loading algorithm for B-trees and a bulk-loading algorithm for R-trees can be
found in [15] and [5,8,16], respectively. In general, bulk-loading algorithms produce a
rather optimized index structure due to the fact that bulk-loading algorithms start with
a whole data set. However, to the best of our knowledge, no investigation has been
done on how to optimize access methods given a multi-zone disk model.

To avoid any possible confusions and misunderstanding, we first define the follow-
ing measures: Definition 1. The area of an index page that is associated with a
d-dimensional hyper-rectangle R in the data space is defined as ∏ −=)(1 ii

d
i lh where,

for all i=1,…,d, hi and li are the high- and low-endpoints of R along dimension i;
Definition 2. The margin of an index page that is associated with a d-dimensional
hyper-rectangle R in the data space is defined as −⋅ =)(2 1 ii

d
i lh where, for all i=1,…,d,

hi and li are the high- and low-endpoints of R along dimension i.

3.1 Static Zoning of Index Structure

Given a complete static index structure (i.e., index structures that are built and
updated by a bulk-updating algorithm), our static zoning algorithm distributes the
index pages among multiple zones. First, let us define two functions: Measure(p) is a
function that returns either area or margin of a page p; Pop(p) is a function that re-
turns the number of objects contained by the leaf level of the subtree rooted at p (i.e.,
the number of the data objects within the region of p). As discussed in Sect. 1, the
zone in which p is stored should be determined by Measure(p) and Pop(p). Now, let
MeasureU and PopU be the area (or margin) of the root page and the total number of
the data objects, respectively. Then one can consider the following weighted sum as
an estimated access probability of a page p for an unknown query:

,
)(

2
)(

1)(
PopU

pPop
W

MeasureU

pMeasure
WpE ×+×= (1)

where 0 W1 1, 0 W2 1, and W1+ W2 = 1.
Considering a large database, the estimated access probability of a leaf page can be

very small (i.e., close to zero). The root page is always accessed (i.e., the access prob-
ability is 1). If the distribution of the queries does not follow the distribution of the
data, W1=1 and W2=0. We assume this through the rest of this paper.

Now, let NZ and Cap be the number of the zones (i.e., the number of available
zones, or a set of selected zones that are under-filled or dedicated to index structures)
and the total sum of the zone capacities, respectively. We sequentially number the

www.manaraa.com

 An Efficient Zoning Technique for Multi-dimensional Access Methods 133

given (selected) zones in such a way that a smaller zone number (zid) is always asso-
ciated with a faster zone (in terms of page read/write time). In addition, let us use
ZCap[zid] to denote the storage capacity of zone zid.

Given a static index structure, our simple static zoning algorithm sorts all pages of
the index structure in descending order by their E value (i.e., Eq. 1). Then, from the
first page with the highest E value, the algorithm assigns ZR[zid]×TS pages to each
given zone zid, where TS is the total number of pages constituting the index structure
and ZR[zid] = ZCap[zid] / Cap, for all zid=0,..,NZ-1. Note that zid 0 represents the
fastest zone among the given NZ zones. This can evenly distribute the index pages
across all selected disk zones, resulting in a uniform utilization of the zone spaces.

3.2 Dynamic Zoning of Index Structure

Dynamic zoning of an index structure is required when the data set is frequently up-
dated. Dynamic zoning is much more challenging than the above mentioned static
zoning because, when an index page is modified at run-time by an insert or delete
operation, the zone in which the modified page is stored must be decided solely based
on the local information. Thus, without careful consideration, index pages could be
placed in a skewed way, which may cause skewed zone usages.

Our novel approach is to assign index pages to the zones in such a way that all
given zones are utilized as equally as possible. Given an index tree that has TS pages
and NZ disk zones, we define disk zone utilization indicator (ZUI) as follows:

,NZ iiZRTS/iZCiZUI)1(,...,0]),[(][][−=×= (2)

where ZC[i] is the actual number of index pages that are stored in zone i, and
(TS×ZR[i]) is the number of index pages that are stored in zone i when the zones are
equally utilized. Note that ZUI[i] > 1 represents that zone i is over-utilized (i.e., too
many index pages in the zone) while ZUI[i] < 1 means that zone i is under-utilized.

Now, let Measure(p), MinM, and MaxM be the area (or margin) of an index page p,
the minimum recorded value of Measure, and the maximum recorded value of
Meaure (note that MaxM = Measure(root)) in the given index tree, respectively. Then,
we define the Relative Importance (RI) of p as follows:

≠
−

−

=

otherwise. 1

, if
)(

)(

MinMMaxM
MinMMaxM

MinMpMeasure

pRI

(3)

Equation 3 assumes that the queries are random and do not follow the distribution
of data. Note that we can modify Eq. 3 as shown in Eq. 1 when the distribution of the
queries follows the distribution of the data. The dynamic zoning algorithm (Fig. 1) of
the DMD-Zoning assigns each index page to a specific zone based on Eqs. 2 and 3.

Please observe that the for-loop (A) in Fig. 1 considers the zones in a descending
order by zid. We do this because of the following characteristics of tree-type index
structures: (1) The area and margin of index pages rapidly decrease downward the
tree; (2) The number of index pages increases at an exponential rate downward the

www.manaraa.com

134 B. Yu and S.H. Kim

int Dynamic_Zoning(index_page)
{
 double C_ZR; //Cumulative ratio of the following measure:
 double Measure;

 Measure = Volume(index_page); // or Margin(index_page);

 //Update MinMeasure and MaxMeasure
 if(Measure < MinMeasure) MinMeasure = Measure;
 if(Measure > MaxMeasure) MaxMeasure = Measure;

 //Define relative importance (RI) of index_page
 if(MinMeasure == MaxMeasure) RI = 1.0;
 else RI=(Measure-MinMeasure)/(MaxMeasure-MinMeasure);

 //Assign a zone to an index page
 for(C_ZR=0, i=0; i<NZ; i++) { //---(A)

ZUI = ZC[NZ-i-1]/ (TS*ZR[NZ-i-1]);
 C_ZR += ZR[NZ-i-1];
 if(RI <= C_ZR && ZUI <= 1)
 return(NZ-i-1);
 }
 return(0);
}

Fig. 1. Dynamic Zoning

tree. Combined, these characteristics of tree-type index structures result in the follow-
ing: most index pages have a very low RI value. Through our experiments, we found
that when the ZUI condition is not considered in (A), most index pages are stored in
the last (slowest) one or two zones and that, in many cases, only the root page is
stored in the first (fastest) zone. This skewed usage of zones aggravates the query
performance and leaves many zones under utilized. In our zoning algorithm (Fig. 1),
those pages stacked in the slowest zones are shifted towards the fastest (first) zone in
such a way that all given zones are utilized as equally as possible (the experimental
evidences will be presented in Sect. 5).

4 Query Processing

A range query with a region initiates a selection process that starts with the root page
and propagates downward, traversing potentially multiple paths in the tree. At each
interior page, the entries are tested to select the child pages that satisfy the search
predicate. In general, the search predicate tests whether the region of the child page
intersect with the minimum bounding rectangle (MBR) of the given query region.
Whenever a leaf page is accessed, the procedure selects all resident objects or data
entries that fall within the query region. The point query is a special case of range
query, where the query range is infinitesimally small. SAMs provide several different
types of range queries (topological queries) and the query processing procedure is
more complicated. An in-depth coverage of this is found in [12,13].

www.manaraa.com

 An Efficient Zoning Technique for Multi-dimensional Access Methods 135

NZ // the total number of existing zones (an environmental constant)
zone_locks[NZ] // an integer semaphore array; one for each zone
ZR[NZ] // ZR[i] is the ratio (the capacity of zone i)/(the disk capacity)
struct index_queue {

PID; //a page ID
Level; //an index tree level

}
index_queue IPA[NZ][]; // each zone is associated with a FIFO

 // queue of the IDs of the pages to be accessed
 // by currently running threads.

// all disk page I/Os come through the followingthree wrappers:
read_page (PID) { // PID is a page ID

if PID is in the buffer then access the page in the buffer
else {

wait (zone_locks[zone(PID)]); //a semaphore operation
//e.g., semop() Linux/Unix call with sem_num=zone(PID)
//and sem_op = -1;
//zone(PID) returns the current zone ID of thePID.
read the page PID from the disk;
signal (zone_locks[zone(PID)]);
//e.g., semop() Linux/Unix call with sem_num=zone(PID)
//and sem_op = 1;

}
}
write_page_on_disk (page, zid) {

wait (zone_locks[zid]); //a semaphore operation
write page on the disk;
signal (zone_locks[zid]); //a semaphore operation

}
write_index_page_on_disk (index_page, old_zid) {
 int new_zid;
 new_zid = Dynamic_Zoning (index_page);
 if (old_zid != null) { // index_page is on the disk

TS -= 1;
 }
 TS += 1; ZC[new_zid] += 1; //placed in zone new_zoneID

write_page_on_disk (index_page, new_zid);
}

ZC[old_zid] -= 1; // the page is removed

Fig. 2. The system-wide components of the DMD-Zoning

 An index search involves a sequence of page accesses. In order to take complete
advantage of a zoned index structure, each index search must be localized. That is,
each search must be a sequence of zone-bursts, where a zone-burst is a sequence of all
necessary page accesses to a certain zone. This is because of the fact that accessing two
pages located in two different zones is slower than accessing two pages in the same
zone due to an increased seek time. Thus, the number of moves across the disk zones
must be minimized. However, in a given tree, an index page p can possibly have a
higher RI than a higher level page p' has if p' is not an ancestor of p. Moreover, pages
at the same level can have different RIs. Therefore, neither depth-first nor breadth-first
implementation of the search procedure can guarantee this localized search.
 Although different index pages can have different RI values, the dynamic zoning
algorithm of the DMD-Zoning guarantees that an index page always has a lower RI

www.manaraa.com

136 B. Yu and S.H. Kim

zone_search (zid)
{

int pid, level;
while(IPA[zid] queue is not empty) repeat {

<pid, level> = get_fifo(IPA[zid]);
read_page(pid);
if(level == tree_height) { // pid is a leaf

get_result(D);
}
else {

for each index entry Ii {
if check_predicate(Ii)

add_queue(Ii);
}

}
} //while loop

}
get_result (D) {
 for each data entry Di {

if Di satisfies the query predicate
 add Di to the result set.

}
}
add_queue (Ii) {

 add <Ii.child_pointer, current_depth+1>
to IPA[zone(Ii.child_pointer)] queue;

}

TS; //the total no. of index pages constituting the index tree
ZC[NZ]; //ZC[i] is the no. of index pages stored in zone i

search_main (q) //q is a range query
{

current_depth = 1; //the root level is level 1
read_page(root);
if(current_depth==tree_height) { //root is the only leaf page

get_result(D);
}
else {

for(i=0; i<NZ; i++) wait(zone_locks[i]); //lock all zones
first_zone = NZ;
for each index entry Ii {

if check_predicate(Ii) {
if(zone(Ii.child_pointer) < first_zone)

first_zone = zone(Ii.child_pointer);
add_queue(Ii);

}
}
for (i=first_zone; i<NZ; i++) { ---------------------- (B)

signal (zone_locks[i]); //unlock zone i
zone_search(i);
wait (zone_locks[i]); //lock zone i

}
// The query has been completed;
for(i=0; i<NZ; i++)

signal(i); //release all zone
}

}

Fig. 3. The generalized query processing algorithm of the DMD-Zoning

value (i.e., a smaller area and margin) than all of its ancestors at a higher level. That
is, along each search path downward the tree, the involved zones are always in an
ascending order by zid. Note that to guarantee that this condition always holds, every
modified page is written on the disk by the function write_index_page_on_disk() in
Fig. 2. In addition, the zone of every ancestor page of the modified page must be
recalculated by the same function upward the tree in a single atomic transaction. Un-
der this condition, the generalized search algorithm (Figs. 2 and 3) of the
DMD-Zoning can ensure that each search is a sequence of zone-bursts and each in-
volved zone is associated with only one of the bursts of the search. Furthermore, since
the algorithm is generalized, it can be applied to a vast majority of tree-type access
methods. Note that, in Fig. 3, each zone_search() call in the for-loop (B) represents a
single zone-burst and that the FIFO queue array IPA in Fig. 2 is updated by the
functions in Fig. 3.

5 Experimental Results

In order to validate that the proposed DMD-Zoning can significantly improve the
performance of access methods, we performed a set of experiments with the original
R*-tree (with 30% forced-reinsertion at the leaf level) [1] and two versions of
DMD-Zoned R*-trees called the Area-Zoned R*-tree and the Margin-Zoned R*-tree.

www.manaraa.com

 An Efficient Zoning Technique for Multi-dimensional Access Methods 137

In the original R*-tree, index pages are placed on a disk without any consideration
of physical zones. While the Area-Zoned R*-tree used the area in calculating the RI
(Equation 3) of each individual index page, the RI of each page of the Margin-Zoned
R*-tree was calculated based on its margin in the data space. The DMD-Zoning was
actually implemented in both the Area-Zoned R*-tree and the Margin-Zoned R*-tree.
In the experiments, a disk model of Seagate Barracuda 7200.7 with 15 zones was
used. All the disk zones were used for storing the index structures (i.e., NZ = 15). We
assumed one-page-buffer and no-pre-fetching to concentrate our focus on disk I/O
time2. All values (coordinate values and pointer values) stored in the tested structures
were 4 bytes long.

In the first experiment with uniformly distributed data, the number of dimensions
was varied between 2 and 64. The page size was fixed at 8K (8,192) bytes. For each
d-dimensional space [0,1]d, a data file of 131,072 (217) randomly generated point
objects was generated. Data objects (records) of each file were inserted into all three
variants of the R*-tree. The retrieval performance of the access methods was meas-
ured over four sets of 2,000 range queries. In first three sets, each side of a random
query rectangle was obtained by generating a random center and extending it along
the dimension parallel to the side by 0.02, 0.1, and 0.25. In the last query set, each
query was generated as follows: 1) randomly generate the center point; 2) extend the
query along every dimension so that the volume of the query is 0.0001. That is, in the
last query set, each unclipped query range covered 0.01% of the data space. In all
query sets, the query rectangles that intersect the boundary of the data space were
properly clipped.

The results of the experiment given in Fig. 4a show that our zoned R*-trees im-
prove the range query performance by reducing the average page access time (aver-
age time required for a query to read all necessary index pages from the disk). As
shown in the figure, the proposed zoning techniques (i.e., the Area-Zoned R*-tree and
Margin-Zoned R*-tree) constantly reduce the average page access time per query
compared to that of the R*-tree by 57.8 – 61.2%. That is, the zoned R*-trees were
about 2.4 – 2.6 times faster than the original R*-tree in processing the range queries.

To further discuss the effectiveness of the DMD-Zoning technique, we considered
the zone utilization indicator (ZUI) defined in Equation 2. Fig. 4b shows the ZUIs of
both the Area-Zoned R*-tree and the Margin-Zoned R*-tree. Please note that, as de-
fined in Equation 2, a ZUI of 1.0 does not mean that the storage space of the zone is
full, but means that a desirable amount of index data (i.e., the denominator in Equa-
tion 2) is stored in the zone. In the figure, one can find that all zones are almost
equally utilized especially in higher dimensional spaces. In low dimensional spaces,
zone 0 is underutilized. To understand the reason for this, one should consider the
following properties of tree-type index structures with a fixed page size: (1) As the
number of dimensions increases, the size of each individual entry becomes larger
because each entry has more coordinate values; (2) As the number of dimensions

2 As a side note: In transactional environments, many transactions and queries are concurrently

processed over numerous data sets and indices, and each query is allocated only a small
fraction of the database buffer. Many database query optimizers (e.g., the cost-based query
optimizer of Oracle8) assume that each query will be executed on a busy multi-user system
with a fairly low buffer cache hit rate.

www.manaraa.com

138 B. Yu and S.H. Kim

 R*-Tree AreaR* MarginR*

Fixed Query Side=0.02

0

20

40

60

80

100

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

Fixed Query Side= 0.1

0

50

100

150

200

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

Fixed Query Side=0.25

0

100

200

300

400

500

600

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

Fixed Query
Volume=0.0001

0
5000

10000
15000
20000
25000
30000

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

(a)

2D

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14

zid

Z
U

I

16D

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14

zid

Z
U

I

36D

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14

zid

Z
U

I

64D

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14

zid

Z
U

I

(b)

Fig. 4. Synthetic Random Uniform Distributions: (a) page access time in milliseconds; (b) zone
utilization indicator (ZUI)

increases, the maximum number of entries that can be stored in a single page de-
creases because the page size is fixed and the entry size increases.

These mean that the average fanout3 of a lower dimensional index tree is larger
than that of a higher dimensional index tree. In addition, given the same number of
data objects, a lower dimensional index tree consists of a smaller number of pages
than a higher dimensional index tree does. For example, in the experiment, the 2-
dimensional, 16-dimensional, and 64-dimensional R-trees consisted of 280, 1616, and
6550 pages. Therefore, storing one more or one less page in a zone resulted in a larger
increase or decrease in the zone utilization (Equation 2) in a lower dimensional case.

Moreover, the measure (i.e., area or margin) decreases downward the tree at a rate
that is a function of the fanout. This rate of a lower dimensional structure is much
higher than that of a higher dimensional structure, because of the larger fanout of the
lower dimensional structure. This results in huge gaps among a few top RI (Equation
3) values. For example, in the experiments with two-dimensional data set (i.e., 2D
case in Fig. 4b), zone 0 and zone 1 contained 2 and 9 pages, respectively, although
both zones have the same capacity. That is, there was only zero (this is possible be-
cause of the page shifting of Dynamic_Zoning algorithm in Sect. 3.2) or one page that
had an RI value that was close enough to the root’s RI to position itself in zone 0.

In the second experiment with synthetic skewed data, each tested data file had
131,072 (217) randomly generated points focused mainly in ten different clusters.
Each cluster was randomly located in the universe and had an extent that varied

3 In a typical index tree that splits each overfilled page into two halves, the average fanout

(page utilization) is about ln2×C, where C is the maximum number of entries that can be
stored in a page [11].

www.manaraa.com

 An Efficient Zoning Technique for Multi-dimensional Access Methods 139

between 0.05 and 0.3 along each dimension. The clusters were populated using
101,072 random data objects. Then 30,000 points were randomly scattered through
the entire universe. The query performance was measured using the four query sets
used in the first experiment.

The results (Fig. 5) of the experiment with skewed data also demonstrate the same
trend as those with uniform data: the proposed DMD-Zoning (i.e., the Area-Zoned
R*-tree and Margin-Zoned R*-tree) reduces the average page access time of the R*-
tree by 57.5-62%. The ZUIs of the Area-Zoned R*-tree were similar to those in Fig. 4.
However, this time, the Margin-Zoned R*-tree showed a higher ZUI on zone 0 when
a high-dimensional data set was given. This is what we actually expected – given the
same structure, the area of index pages decreases downward the tree at a much faster
rate than the margin of index pages does, especially in a higher dimensional space.
One can further observe this by comparing Definitions 1 and 2 in Sect. 3.2 with the
changing factor d. This resulted in a couple of slightly underutilizes zones in slower,
but larger, zones (zones 12, 13, and 14 in Fig. 5b). Consequently, preceding zones had
too many pages and sent some pages towards zone 0.

The last experiment was conducted over a large real data set. Our real data set rep-
resented a database table of 1,028,872 records. This data table was obtained from a
database of a telecommunication company. The original table has 19 attributes of
different types. However, by breaking the values of certain attributes and applying
simple transformations, we obtained an array of 25-dimensional points with 4-byte
unsigned long coordinates (nulls were replaced by a value of zero). Using an order-
preserving domain transformation, the values of each attribute were normalized to a
range of floating-point numbers between 0 and 1. Then, by multiplying each attribute

 R*-Tree AreaR* MarginR*

Fixed Query Side=0.02

0
50

100
150
200
250
300
350

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

Fixed Query Side= 0.1

0

200

400

600

800

1000

1200

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

Fixed Query Side=0.25

0

1000

2000

3000

4000

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

Fixed Query
Volume=0.0001

0
5000

10000
15000
20000
25000
30000

2 3 4 16 25 36 49 64

Dimensionality

P
ag

e
A

cc
es

s
T

im
e

(a)

2D

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14

zid

Z
U

I

16D

0.00

1.00

2.00

3.00

4.00

5.00

0 2 4 6 8 10 12 14

zid

Z
U

I

36D

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2 4 6 8 10 12 14

zid

Z
U

I

64D

0.00

1.00

2.00

3.00

4.00

0 2 4 6 8 10 12 14

zid

Z
U

I

(b)

Fig. 5. Synthetic Skewed Distributions: (a) page access time in milliseconds; (b) zone
utilization indicator (ZUI)

www.manaraa.com

140 B. Yu and S.H. Kim

value by 232 and rounding the result, we obtained the data points in a universe with 25
dimensions, each of which was 4 bytes long. Analyzing this set, we found that exactly
303,278 objects had no null values and that each of the rest of the data objects (i.e.,
725,594 records) had about 2.18 nulls on average. The objects having one or more
nulls appear on the boundary of the universe. That is, over 70% of the data points
were located on the boundary of the universe.

To measure the performance of the R*-tree variants, five sets of range queries were
generated. In the first two query sets, the side length (extent) of every query was fixed
at 0.1 and 0.25, recursively. As before, the queries that intersect the boundary of the
data space were clipped. In the other three sets, query rectangles had a fixed volume
of 0.0001, 0.01, and 0.1. Again, some queries were clipped. Every query set had 3,000
queries.

 R*-Tree AreaR* MarginR*

0

10

20

30

40

50

60

0.1 0.25

Query Side Length

P
ag

e
A

cc
es

s
T

im
e

0

2000

4000

6000

8000

10000

12000

0.0001 0.01 0.1

Query Volume

P
ag

e
A

cc
es

s
T

im
e

0.95

0.96

0.97

0.98

0.99

1.00

1.01

0 2 4 6 8 10 12 14

zid

Z
U

I

(a) (b)

Fixed Query Side=0.1

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0 2 4 6 8 10 12 14

zid

A
P

Z
P

A

Fixed Query Side=0.25

0.00%
0.02%
0.04%
0.06%
0.08%
0.10%
0.12%
0.14%

0 2 4 6 8 10 12 14

zid

A
P

Z
P

A

Fixed Query Vol=0.0001

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

0 2 4 6 8 10 12 14

zid

A
P

Z
P

A

Fixed Query Vol=0.1

0.00%

2.00%

4.00%

6.00%

8.00%

0 2 4 6 8 10 12 14

zid

A
P

Z
P

A

(c)

Fig. 6. Large Real Data Distribution: (a) page access time in milliseconds; (b) zone utilization
indicator (ZUI); (c) average percentage of zoned pages accessed (APZPA)

The results of the experiment given in Fig. 6 also demonstrate the same trend as in
the results of the previous experiments: the proposed DMD-Zoning (i.e., the Area-Zoned
R*-tree and Margin-Zoned R*-tree) reduces the average page access time of the R*-tree
by 58.2-62.1%. Furthermore, Fig. 6 shows the best ZUIs that we have observed.

6 Discussion

Table 1 summarizes the experimental results presented and discussed in Sect. 5. The
percentage improvements represent 100×(RTR* - RTDMD) / RTR*, where RTR* is the

www.manaraa.com

 An Efficient Zoning Technique for Multi-dimensional Access Methods 141

page access time (average time required for a query to read all necessary index pages
from the disk) of the original R*-tree and RTDMD is the page access time of the R*-tree
improved by the DMD-Zoning (Area-Zoned or Margin-Zoned). As shown in the table,
the DMD-Zoning constantly improved the performance of the R*-tree by about 60%
in all tested cases.

To compare the Margin-Zoned R*-tree and the Area-Zoned R*-tree, we considered
the following measure: Average Percentage of Zoned Pages Accessed by a single
query (APZPA). Fig. 6c shows the APZPAs of both the Area-Zoned R*-tree and the
Margin-Zoned R*-tree tested on the 25-dimensional real data introduced in Sect. 5.
As discussed in Sect. 1 (Modified Condition 1), when the pages that are stored in a
faster zone actually have a higher access frequency (i.e., more pages required by a
query are found in faster zones), the query performance is further improved. That is,
we want a faster zone to have a higher APZPA value.

Table 1. Percentage Improvements

Data
Distribution

Margin-Zoned
R*-tree

Area-Zoned
R*-tree

uniform 58.4 – 61.2% 57.8 – 59.9%
clusters 58.3 – 62% 57.5 – 60%
real 60.1 – 62.1% 58.2 – 61.9%

In Table 1 that summarizes our experimental results, one can find that the improve-
ments of the Margin-Zoned R*-tree are higher than those of the Area-Zoned R*-tree by
a small margin. One can find the reason for this by observing Fig. 6c: The Margin-
Zoned R*-tree's APZPAs are better than those of the Area-Zoned R*-tree. While the
Margin-Zoned R*-tree's average page access frequencies are nicely skewed towards
the fastest zone, the Area-Zoned R*-tree shows rather flat APZPAs. That is, in our
experiments, the Margin-Zoned R*-tree was better than the Area-Zoned R*-tree in
estimating (i.e., RI, Equation 3) the actual access frequencies of the pages. In contrast,
although both of the Area-Zoned R*-tree and the Margin-Zoned R*-tree showed excel-
lent (i.e., almost equal) zone utilizations in most cases, the Area-Zoned R*-tree showed
a better ZUIs in the experiment with the synthetic skewed data (Fig. 5).

In closing this section, we put an emphasis on the fact that the DMD-Zoning
technique can improve virtually any access method. In the paper, we presented two
variants of the DMD-Zoning (one is the margin-based zoning and the other is the
area-based zoning) that can enhance any access method that employs a hierarchy of
pages as the index structure. For example, the presented DMD-Zoning can be directly
applied to the following access methods without any modifications: KDB-tree vari-
ants [11,14], R-tree variants [1,3,6,13], QSF-tree variants [12], and B-tree variants
[4]. Because rectangular approximations (or grouping) of regions are characterized by
intermediate complexity and accuracy, they tend to be used more frequently. How-
ever, there are different access methods, such as the SS-tree [18], the TV-tree [9], and
the Pyramid technique [2], that employ a different approximation of regions. One can
easily apply the DMD-Zoning to any hierarchical access method that employs a
non-rectangular approximation or grouping by simply changing the measures in
Definitions 1 and 2.

www.manaraa.com

142 B. Yu and S.H. Kim

7 Conclusion

In recent years, an increasing number of database applications deal with large sets of
static or dynamic multidimensional data. In these applications, the query performance
is heavily dependent on the available access methods and the underlying disk system.
Unlike traditional disk models, recently developed disk models provide multiple
zones in a disk, where seek times and data transfer rates vary significantly across the
zones. Although efficient index optimizations, such as bulk-loading and packing algo-
rithms, have been developed for large static data, there is a marked lack of investiga-
tion on how to optimize multidimensional access methods given a zoned disk model.

In this paper, we proposed a novel zoned access technique that can significantly
enhance the query performance of a wide variety of access methods by taking into
account the different page read/write times of the disk zones. The proposed index
zoning algorithms can zone virtually any static or dynamic hierarchical (tree-type)
index structure in such a way that all disk zone spaces are equally utilized and that
more frequently accessed pages are stored in a faster zone. Then the proposed gener-
alized query algorithm makes each search be a sequence of zone-bursts, where each
involved zone is associated with only one of the bursts. In the presented experiments,
the proposed zoned access technique, called the DMD-Zoning, improved the query
performance of the R*-tree by an almost constant factor of 2.5.

In our future research, we will consider zoned multi-disk models, concurrency con-
trol, and different type queries, such as the k-nearest neighbor query.

References

1. Beckman, N., et. Al., The R*-tree: An Efficient and Robust Access Method for Points and
Rectangles. In ACM SIGMOD International Conference on Management of Data, pages
322-331, 1990.

2. Berchtold, S., Bohm, C., & Kriegel, H.-P. (1998). The Pyramid-technique: Towards break-
ing the curse of dimensionality. Proc. ACM SIGMOD Int. Conf. on Management of Data
(pp. 142-153).

3. Berchtold, S. Keim, D., & Kriegel, H.-P. (1996). The X-tree: An index structure for high-
dimensional data. Proc. VLDB Int. Conf. on Very Large Data Bases (pp. 28-39).

4. Comer, D., “The Ubiquitous B-tree,” ACM Computing Surveys 11, pp. 121-137, 1979.
5. Faloutsos, C. and Kamel, I. On Packing R-tree. In Proceedings of the ACM International

Conference on Information and Knowledge Management (CIKM), pages 490-499, 1993.
6. Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. Proc. ACM

SIGMOD Int. Conf. on Management of Data, pp. 47-54.
7. Leutenegger, S.T. and Lopez, M.A., The Effect of Buffering on the Performance of R-

trees. IEEE Transactions on Knowledge and Data Engineering, 12(1):33-44, 2000.
8. Leutenegger, S.T. and Lopez, M.A. and Edingnton, J.M., STR: A Simple and Efficient Al-

gorithm for R-tree Packing. IEEE International Conference on Data Engineering, pages
497-506, 1997.

9. Lin, K., Jagadish, H., and Faloutsos, C. (1995). The TV-tree: An Index Structure for High-
Dimensional Data. VLDB Journal. Vol. 3, pp. 517-542.

10. Ng, S.W., Advances in Disk Technology: Performance Issues. IEEE Computer Magazine,
pages 75-81, 1998.

www.manaraa.com

 An Efficient Zoning Technique for Multi-dimensional Access Methods 143

11. Orlandic, R., & Yu, B. (2002). A Retrieval Technique for High-Dimensional Data and Par-
tially Specified Queries. DKE Data & Knowledge Engineering, Elsevier 42(2), pp. 1-21.

12. Orlandic, R. and Yu, B., Scalable QSF-Trees: Retrieving Regional Objects in High-
Dimensional Spaces, Journal of Database Management, Idea Group Publishing, 15(3):
45-59, 2004.

13. Papadias, D. Theodoridis, Y., Sellis, T., & Egenhofer, M.J. (1995). Topological relations
in the world of minimum bounding rectangles: A study with R-trees. Proc. ACM SIGMOD
Int. Conf. on Management of Data (pp. 92-103).

14. Robinson, J.T. (1981). The K-D-B Tree: A Search Structure for Large Multidimensional
Dynamic Indexes. Proc. ACM SIGMOD Int. Conf. on Management of Data (pp. 10-18).

15. Rosenberg, A.L. and Snyder, L., Time- and Space- Optimality in B-trees, ACM Transac-
tions on Database Systems, 6(1):174-193, 1981.

16. Roussopoulos, N. and Leifker, D., Direct Spatial Search on Pictorial Database Using
Packed R-trees, ACM International Conference on Management of Data, pages 17-31,
1985.

17. Ruemmler, C. and Wilkes, J., An Introduction to Disk Drive Modeling, IEEE Computer,
March 1994.

18. White, D.A., & Jain, R. (1996). Similarity Indexing with the SS-tree. Proc. 12th IEEE
Conf. on Data Engineering (pp. 516-523).

www.manaraa.com

Author Index

Aier, Stephan 2
Altintas, N. Ilker 15
Anastasakis, Kyriakos 44
Armendáriz, José Enrique 29

Bordbar, Behzad 44

Cetin, Semih 15

de Juan-Maŕın, Rubén 29
Decker, Hendrik 29
Dowdeswell, Barry 56

Frank, Lars 71

Gorawski, Marcin 84

Haas, Laura 1

Irún-Briz, Luis 29

Kim, Seon Ho 129

Lenz, Hans-Joachim 99
Lindner, Wolfgang 114
Lutteroth, Christof 56

Marks, Pawel 84
Meier, Jörg 114
Muñoz-Escóı, Francesc D. 29

Schönherr, Marten 2

Thalheim, Bernhard 99

Yu, Byunggu 129

	Frontmatter
	Building an Information Infrastructure for Enterprise Applications
	Evaluating Integration Architectures -- A Scenario-Based Evaluation of Integration Technologies
	Integrating a Software Product Line with Rule-Based Business Process Modeling
	A Middleware Architecture for Supporting Adaptable Replication of Enterprise Application Data
	MDA and Analysis of Web Applications
	A Message Exchange Architecture for Modern E-Commerce
	Architecture for Distributed ERP Systems
	Influence of Balancing Used in a Distributed Data Warehouse on the Extraction Process
	OLAP Schemata for Correct Applications
	Towards a Secure Data Stream Management System
	An Efficient Zoning Technique for Multi-dimensional Access Methods
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

